期刊文献+

关联规则算法的研究 被引量:9

Research of Association Rules Algorithm
下载PDF
导出
摘要 Apriori算法是发现频繁项目集的经典算法,但是该算法需反复扫描数据库,因此效率较低。文中针对传统的Apri-ori算法需要多次扫描数据库,由此导致的性能瓶颈及效率问题,提出了一种改进的关联规则挖掘算法(AAC算法)。该算法只需一次扫描数据库即可完成所有频繁项集的搜索,极大地提高了算法的效率。 Apriori algorithm is the classic method which used to detect frequent item sets. But due to the algorithm need to be repeated scanning the database, it has less efficiency. The article for the traditional Apriori algorithm necessary to scan the database many times and the resulting efficiency and performance bottlenecks, raising an improved method of mining association rules (AAC algorithm) , it only need to scan the database one time to finish all the frequent item sets detecting,greatly improve the efficiency of the algorithm.
出处 《计算机技术与发展》 2009年第5期56-58,共3页 Computer Technology and Development
基金 国家自然科学基金(60173041)
关键词 AAC算法 关联规则 数据挖掘 APRIORI算法 一次扫描数据库的Apriori AAC algorithm multi- association rule data mining Apriori algorithm one time scan database's Apriori algorithm
  • 相关文献

参考文献4

  • 1Cai C H, Fu A, Cheng C H, et al. Mining Assocation Rules with Weighted hems[R]. IEEE DEAS. [s. l.]: [s. n.], 2002: 68 - 77.
  • 2Ballou D P, Tayi G K. Enhancing data quality in data warehouse environments[ J ]. Communication of ACM, 1999,42 : 73 - 78.
  • 3李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2003..
  • 4徐勇,周森鑫.一种改进的关联规则挖掘方法研究[J].计算机技术与发展,2006,16(3):77-79. 被引量:13

二级参考文献13

  • 1Han jiawei, Kamber M. Data Mining - concepts and techniques[ M]. San Francisco, CA: High Education Press, Morgan Kaufman Publishers,2001.
  • 2Agrawal R, Imielinski T, Swami A. Mining Association rules between sets of items in large databases[A]. In Proc 1993 ACM- SIGMOD Int Conf Managenaent of Data (SIGMOD'93)[C]. Washington D.C. :[s.n. ],1993.207-216.
  • 3Agrawal R,Srikant R. Fast algorithms for mining association rules in large database[R]. Technical Report FJ9839, San Jose, CA: IBM Almaden Research Center, 1994.
  • 4Tan P, Kumar V. Interestingness Measures for Association Patterns. A Perspective[R]. Technical Report # TR00036, Department of Computer Science, University of Minnesota, 2000.
  • 5Agrawal R, Srikant R. Fast algorithms for mining assocition rules[A]. In Proc. of 20th Int Conf Very Large Databases (VLDB'94) [C]. CA: [s. n. ], 1994. 487 - 499.
  • 6Piatetsky- Shapiro G. Discovery, Analysis, and Presentation of Strong Rules[A]. In Piatetsky- Shapiro G. Knowledge Discovery in Databases [ C]. California: AAAI/MIT Press,1991. 229 - 248.
  • 7Brin S, Motwani R, Silverstein C. Beyond market basekets:Generalizing association rules to correlations[A]. In: Proc of1997 ACM SIGMOD Int'1 Cord on management of Data[ C].Tucson, Arizona, UAS: ACM Press, 1997. 265- 276.
  • 8Aggarwal C C, Yu P S. A new framework for itemset generation[A]. In Proc 1998 ACM Syrup Principles of Database Systems(PODS' 98) [ C]. NY: [ s. n. ], 1999.18 - 24.
  • 9Ahmed K M, El-Makky N M, Taha Y.A note on Beyond market basket: Generalizing assocation rules to correlations [Z]. In: Fayyad U. ACM SIGMOD Explorations Newsletter, 2000,1(2):46-48.
  • 10Chen M S,Han J,Yu P S. Data mining: An overview from a database perspective [ J ]. IEEE Trans Knowledge and Data Engineering, 1996,8:866 - 883.

共引文献118

同被引文献73

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部