摘要
针对最差情况H∞辨识中最常见的一类模型集,给出了一种基于时域数据的两步辨识算法.第一步通过信息一致性原理把辨识问题转化为受限凸规划问题,第二步利用一个多项式逼近定理在第一步结果基础上,对不确定集中的系统进行逼近,得到辨识出的名义模型.最后分析了辨识算法的局部误差、全局误差和算法的收敛性.
This paper presents a twostep algorithm for the worst case H∞ identification of a class of wellknown model set with time domain experimental data.Using the information consistency principle,the first step of the algorithm transforms the identification problem into a constrained convex programming,the result of which is then used,in the second step,to approximate systems in the uncertainty set to obtain the identified nominal model based on a polynomial approximation theorem.Discussions on the local and global identification errors and the convergence of the algorithm are also carried out respectively.
出处
《自动化学报》
EI
CSCD
北大核心
1998年第2期154-159,共6页
Acta Automatica Sinica
基金
中国博士后科学基金
关键词
H∞辨识
多项式逼近
时域设计
系统辨识
Worst case identification in H∞,time domain experimental data,information consistency,polynomial approximation