摘要
讨论了回归神经元网络(RNN)的网络结构和基本实现方法,提出了主元分析(PCA)和具有自校正功能的回归神经元网络相结合的非线性时变系统预报建模方法,并用于减压塔塔顶温度的预报.结果表明,该方法具有良好的预报性能.
This paper discusses the architecture and algorithm of recurrent neural networks(RNN) and proposes an approach of prediction modeling for non linear time varying system based on the recurrent neural networks with self tuning function in combination with principal component analysis. The method is applied to predict the top temperature of vacuum distillation column and has been proven to have better performance than other methods.
出处
《信息与控制》
CSCD
北大核心
1998年第2期156-160,共5页
Information and Control
基金
国家自然科学基金
关键词
回归神经元网络
主元分析
建模
预报
recurrent neural networks, principal component analysis, prediction modeling