摘要
在粗燥集理论研究中,覆盖方法的应用越来越受到重视,其中拓扑空间的子集关于子基的内部和闭包两个概念尤为重要.在最近由它们导入的关于子基的连通性基础上,给出了关于子基的局部连通性概念,并研究它的性质,得到一般拓扑学中局部连通性的一种推广.
Covering methods are widely used in rough set theory. The interior and the closure of a subset relative to a subbase for the topology are introduced to study the relationships between the rough sets and the topological space. We introduce and study local connectedness relative to a subbase for the topology on the basis of connectedness relative to a subbase, and some properties are also discussed. Which generalize local connectedness in a general topology.
出处
《数学的实践与认识》
CSCD
北大核心
2009年第8期228-233,共6页
Mathematics in Practice and Theory
关键词
拓扑
子基
关于子基的开集
连通空间
关于子基的连通性
局部连通空间
关于子基的局部连通性
topology
subbase
the open set relative to a subbase
connected space
connectedness relative to a subbase
local connected space
local conneetedness relative to a subbase