期刊文献+

关于子基的局部连通性 被引量:1

The Local Connectedness Relative to a Subbase for the Topology
原文传递
导出
摘要 在粗燥集理论研究中,覆盖方法的应用越来越受到重视,其中拓扑空间的子集关于子基的内部和闭包两个概念尤为重要.在最近由它们导入的关于子基的连通性基础上,给出了关于子基的局部连通性概念,并研究它的性质,得到一般拓扑学中局部连通性的一种推广. Covering methods are widely used in rough set theory. The interior and the closure of a subset relative to a subbase for the topology are introduced to study the relationships between the rough sets and the topological space. We introduce and study local connectedness relative to a subbase for the topology on the basis of connectedness relative to a subbase, and some properties are also discussed. Which generalize local connectedness in a general topology.
机构地区 德州学院数学系
出处 《数学的实践与认识》 CSCD 北大核心 2009年第8期228-233,共6页 Mathematics in Practice and Theory
关键词 拓扑 子基 关于子基的开集 连通空间 关于子基的连通性 局部连通空间 关于子基的局部连通性 topology subbase the open set relative to a subbase connected space connectedness relative to a subbase local connected space local conneetedness relative to a subbase
  • 相关文献

参考文献19

  • 1Pawlak Z, Rough sets[J]. International Journal of Computer and Information Sinence, 1982,11 : 341-356.
  • 2Biswas R, Nanda S. Rough groups and rough subgroups[J]. Bull Polish Acad Sci Math, 1994,42,251-254.
  • 3Iwinski J. Algebraic approach to rough sets[J]. Bull Polish Acad Sci Math,1987,35:673-683.
  • 4Kuioki N, Wang P P. The lower and upper approximations in fuzzy group[J]. Inform Sci,1996,90:203-220.
  • 5Kuioki N. Rough ideals in semigroups[J]. Inform Sci, 1977,100:139-163.
  • 6祝峰,何华灿.粗集的公理化[J].计算机学报,2000,23(3):330-333. 被引量:51
  • 7张仕念,刘文奇.可测空间与Pawlak代数[J].模糊系统与数学,2001,15(4):40-43. 被引量:9
  • 8于剑,程乾生.粗集与不可测集[J].科学通报,2000,45(7):686-689. 被引量:20
  • 9Yao Y Y. Relationl interpretations of neighborhood operators and rough set approximation operators[J]. Inform Sci, 4988,111 : 239-259.
  • 10陈德刚,张文修.粗糙集和拓扑空间[J].西安交通大学学报,2001,35(12):1313-1315. 被引量:42

二级参考文献49

  • 1曾黄麟.粗集理论及其应用(一)[J].四川轻化工学院学报,1996,9(1):18-28. 被引量:41
  • 2李进金.由子基生成的内部算子和闭包算子[J].数学进展,2006,35(4):476-484. 被引量:28
  • 3Zakowski W. Approximations in the Space (U, R). Demonstratio.Mathematica, 1983, 16:761-769.
  • 4Bonikowski Z, Bryniarski E, Wybraniec-Skardowska U. Extensions and Intentions in the Rough Set Theory. Information Science,1998, 107:149-167.
  • 5Bonikowski Z. Algebraic Structures of Rough Sets. In: Ziarkow P,ed. Rough Sets, Fuzzy Sets and Knowledge Discovery. London:Springer-Verlag, 1994, 243 - 247.
  • 6Bryniaski E. A Calculus of Rough Sets of the First Order. Bulletin of the Polish Academy of Sciences, 1989, 37(16) : 71 - 77.
  • 7Pomykala J A. Approximation Operations in Approximation Space.Bulletion of the Polish Academy of Science, 1987, 35(9 - 10) : 653- 662.
  • 8KellyJL 著 吴从析 吴让泉 译.一般拓扑学[M].北京:科学出版社,1982..
  • 9Lin T Y,Rough Sets and Data Mining,1997年
  • 10Zhu Feng,Proceedings of the Fourth International Conferenceon High-Performance Computing,2000年

共引文献170

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部