期刊文献+

钙基CO_2吸收剂循环反应特性的试验与模拟 被引量:20

Experimental Research and Modeling of Multiple Carbonation/Calcination Cycle of Ca-based CO_2 Sorbents
下载PDF
导出
摘要 合成了3种不同质量配比的钙基CO2吸收剂CaO/Ca12Al14O33,并对CaO/Ca12Al14O33、石灰石、白云石的循环煅烧/碳酸化特性进行试验研究,以考察吸收剂的转化率随循环反应次数的变化规律。试验结果表明,3种吸收剂反应活性均随循环反应次数的增加而降低;在850℃煅烧温度下,CaO/Ca12Al14O33(75%/25%)吸收剂在第10次循环后其循环转化率保持在51.7%左右;在900℃煅烧温度下,吸收剂活性下降较快,CaO/Ca12Al14O33的反应活性高于石灰石和白云石,且当CaO和Ca12Al14O33的质量比为75%/25%时最优。建立了吸收剂的循环转化率模型以及循环碳酸化过程动力学模型,为反应器的设计提供理论依据。 A Ca-based CO2 sorbent, CaO/Ca12Al14O33, with three different weight ratios was synthesized. The cyclic reaction characteristic of CaO/Ca12Al14O33, limestone and dolomite with CO2 were investigated by using TGA. Experimental results indicate that the cyclic conversions of the three absorbents decrease with an increase in cyclic reaction numbers and the cyclic conversion of CaO/Ca12Al14O33 (75%/25%) retains 51.7% after 10th cycle at 850 ~C calcination temperature. The conversion of the sorbents decreases more evidently at more rigorous calcination condition with 900℃. The capability of CaO/Ca12Al14O33 is better than that of dolomite and limestone and CaO/Ca12Al14O33 achieves the best performance with an optimal mass ratio of 75%/25%. The kinetic models of cyclic conversion and carbonation for the sorbents were developed to offer basic theory for reactor design.
出处 《中国电机工程学报》 EI CSCD 北大核心 2009年第14期30-35,共6页 Proceedings of the CSEE
基金 国家重点基础研究发展计划项目(973项目)(2006CB705807)~~
关键词 钙基CO2吸收剂 循环反应 转化率 Ca-based CO2 sorbent cyclic reaction conversion
  • 相关文献

参考文献19

  • 1Li Zhenshan, Cai Ningsheng, Yang Jingbiao. Continuous production of hydrogen from sorption-enhanced steam methane reforming in two parallel fixed-bed reactors operated in a cyclic manner[J]. Ind. Eng. Chem. Res., 2006, 45(26): 8788-8793.
  • 2Han C, Harrison D P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chem. Eng. Sci., 1994, 49(24): 5875-5883.
  • 3李振山,蔡宁生,黄煜煜.吸收增强式甲烷水蒸气重整制氢实验研究[J].燃料化学学报,2007,35(1):79-84. 被引量:13
  • 4Bandi A, Specht M, Sichler P, et al. In situ gas conditioning in fuel reforming for hydrogen generation[C]. 5th International Symposium on Gas Cleaning at High Temperatures, Morgantow, 2002.
  • 5Pfeifer C, Puchner B, Hofbauer H. In-situ CO2-absorption in a dual fluidized bed biomass steam gasifier to produce a hydrogen rich syngas[J]. International Jorunal of Chemical Reactor Engineering, 2007, 5: A9.
  • 6Nicholas H, Florin, Andrew T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science, 2008, 63(2): 287-316.
  • 7Abanades J C, Alvarez D. Conversion limits in the reaction of CO2 with lime[J]. Energy&Fuels, 2003, 17(2): 308-315.
  • 8Abanades J C, Anthony E J, JinSheng Wang, et al. Fluidized bed combustion systems integrating CO2 capture with CaO[J]. Environ. Sci. Technol., 2005, 39(8): 2861-2866.
  • 9Fang Fan, Li Zhenshan, Cai Ningsheng. Experiment and modeling of CO2 capture from flue gases at high temperature in fluidized bed reactor with Ca-based sorbents[J]. Energy & Fuels, 2009, 23(1): 207-216.
  • 10王保文,郑瑛,宋侃,郑楚光,刘德昌.多循环CCRs法在分离燃煤锅炉尾部烟气中CO_2方面的应用[J].环境污染治理技术与设备,2006,7(4):19-24. 被引量:13

二级参考文献41

  • 1李振山,蔡宁生,黄煜煜,韩海锦.CaO循环吸收CO_2的实验研究[J].燃烧科学与技术,2005,11(4):379-383. 被引量:28
  • 2黄煜煜,李振山,蔡宁生.高温CO_2吸附/吸收剂的研究进展[J].热能动力工程,2005,20(6):557-561. 被引量:21
  • 3Han C, Harrison D P. Simultaneous shift and carbon dioxide separation for the direct production of hydrogen[J]. Chem Eng Sci, 1994,49(24): 5875-5883.
  • 4Balasubramanian B, Lopez A, Kaytakoglu S, et al. Hydrogen from methane in a single-step process[J]. Chem Eng Sci, 1999,54(15-16): 3543-3552.
  • 5Specht M, Bandi A, Baumgart F, et al. Method and Device for Producing a Hydrogen or Synthesis Gas and Use Thereof[P]. PCT Patent, 2001:WO01/23302.
  • 6Lin Shiying, Yoshizo Suzuki, Hiroyuki Hatano, et al. Developing an innovative method, HyPr-RING, to produce hydro-gen from hydrocarbons[J]. Energy Conversion and Management, 2002,43(9-12): 1283-1290.
  • 7Barker R. The reversibility of reaction CaCO3=CaO+CO2[J]. J Appl Chem Biotechnol, 1973,23: 733-742.
  • 8Aihara M, Nagai T, Matsushita J, et al. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Applied Energy, 2001,69(3): 225-238.
  • 9Bhatia S K, Perlmutter D D. Effect of the product layer on the kinetics of the CO2:Lime reaction[J]. AICHE, 1983,29(1): 79-86.
  • 10German R M, Munir Z A. Surface area reduction during isothermal sintering[J]. Journal of the American Ceramic Society,1976,59(9-10): 379-383.

共引文献47

同被引文献284

引证文献20

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部