期刊文献+

基于人工免疫系统的关联规则增量挖掘

Incremental Updating Algorithm Based on Artificial Immune System for Mining Association Rules
下载PDF
导出
摘要 本文采用人工免疫算法进行关联规则挖掘,通过权值设置发现在事务数据集中有意义的二进制关系,将挖掘工作集中在那些有着特殊权值的有意义的关联项,避免了挖掘工作在大量的无意义的关系项中搜索。实验证明,此算法是有效的且灵活性强,能在Web使用数据集中发现有意义的带权值的关联规则。同时给出了在最小支持度和最小置信度不变的情况下,在动态数据集中进行增量关联规则挖掘的方法。同样使用权值方法来提升新数据集的重要性。此方法的可行性和有效性同样在实验中体现出来。 We address the issues of discovering significant binary relationships in transaction datasets in a weighted setting. Traditional model of association rule mining is adapted to handle weighted association rule mining problems where each item is allowed to have a weight.The goal is to steer the mining focus to those significant relationships involving items with significant weights rather than being flooded in the combinatorial explosion of insignificant relationships.A new algorithm is developed based on artificial immune system and on the improved model for association rules mining.The algorithm is both scalable and efficient in discovering significant relationships in weighted settings as illustrated by experiments performed on web usage datasets.Meanwhile, we also propose a strategy for maintaining association rules in dynamic databases.We assume that the two thresholds,min support and min confidence,do not change.This method uses weighting technique to highlight new data.The experiments have shown that our approach is efficient and promising.
出处 《情报学报》 CSSCI 北大核心 2009年第2期169-174,共6页 Journal of the China Society for Scientific and Technical Information
基金 国家自然科学基金资助项目(60564001)。
关键词 人工免疫系统 关联规则 WEB使用挖掘 增量式更新 artificial immune system association rules Web usage mining incremental updating
  • 相关文献

参考文献6

  • 1Agrawal R,Imielinski T,and Swami A.Mining association rules between sets of items in large databases[C]∥Proc.1993 ACM-SIGMOD Int.Conf.Management of data.May 1993:207-216.
  • 2Feng Tao.Mining Binary Relationships from Transaction Data in Weighted Settings[D].School of Computer Science,Queen's University Belfast,UK,2003.
  • 3梁美莲,梁家荣,郭晨.基于人工免疫系统的关联规则挖掘算法[J].计算机应用,2004,24(8):50-53. 被引量:4
  • 4Mobasher B,Dai H,Luo T,et al.Effective personalization based on association rule discovery from web usage data[A].Mobasher B ed.3 rd Int Workshop on Web Information and Data Management (WIDM 2001)[C].New York:ACM Press,2001:9-15.
  • 5陈劲松,施小英.一种关联规则增量更新算法[J].计算机工程,2002,28(7):106-107. 被引量:27
  • 6Catledge L,Pitkow J.Characterizing Browsing Behaviors on the World Wide Web[J].Computer Networks and ISDN System,1995(26):1065-1073.

二级参考文献12

  • 1[1]Agrawal R. Mining Association Rules Between Sets of Items in Large Database. Washington, DC:Proceedings of ACM SIGMOD Conference on Management of Data, 1993-05:207-216
  • 2[2]Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules.Santiago, Chile: Proceedings of the 20th International Conference on Very Large Databases, 1994-09:487-499
  • 3[3]Cheung D W. Maintenance of Discovered Association Rules in Large Databases:An Incremental Updating Technique. New Orleans,Louisana:Proceedings of the 12th International Conference on Data Engineering,1996:106-114
  • 4[2]Hunt JE,Cooke DE. Learning using an artificial immune system[J].Journal of Network and Computer Applications,1996,19(2):189-212.
  • 5[3]Timmis J.Artificial Immune System:A novel data analysis technique inspired by the immune network theory [D]. Department of Computer Science,University of Wales,2001.
  • 6[4]De Castro LN,Von Zuben FJ.An evolutionary immune network for data clustering[A].Proc 6th Brazilian Symposium on Neural Networks[C]. Rio de Janeiro,Brazil,2000.84-89.
  • 7[5]Han J,Kamber M.Data Mining:Concepts and Techniques[M].Beijing:Higher Education Press,2001.
  • 8[6]Hipp J,Guntzer U,Nakhaeizadeh G.Algorithms for association rule mining - a general survey and comparison[J].SIGKDD Explorations,2000,2(1):58-64.
  • 9[7]Perelson A.Immune network theory[J].Immunological Review,1989,110:5-36.
  • 10[8]Agrawal R,Srikant R.Fast algorithms for mining association rules[A].Proc of the 20th Int Conf on Very Large Databases(VLDB'94)[C].Santiago,Chile,1994.487-499.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部