期刊文献+

面向草图检索的小样本增量有偏学习算法 被引量:2

Small Sample Incremental Biased Learning Algorithm for Sketch Retrieval
下载PDF
导出
摘要 为了解决草图检索相关反馈中小样本训练、数据不对称及实时性要求这3个难点问题,提出了一种小样本增量有偏学习算法.该算法将主动式学习、有偏分类和增量学习结合起来,对相关反馈过程中的小样本有偏学习问题进行建模.其中,主动式学习通过不确定性采样,选择最佳的用户标注样本,实现有限训练样本条件下分类器泛化能力的最大化;有偏分类通过构造超球面区别对待正例和反例,准确挖掘用户目标类别;每次反馈循环中新加入的样本则用于分类器的增量学习,在减少分类器训练时间的同时积累样本信息,进一步缓解小样本问题.实验结果表明,该算法可以有效地改善草图检索性能,也适用于图像检索和三维模型检索等应用领域. This paper proposes an algorithm named Small Sample Incremental Biased Learning Algorithm to solve three difficulties of relevance feedback in sketch retrieval, including small sample issue, asymmetry of training data and real-time requirement. The algorithm combines active learning, biased classification and incremental learning to model the small sample biased learning problem in relevance feedback process. Active learning employs uncertainty sampling to choose the best.labeling samples, so that the generalization ability of classifier is maximized with the limited training data; Biased classification constructs hyperspheres to treat positive and negative data differently, which distinguishes the user's target class accurately; Newly labeled samples in each feedback loop are used to train the classifier incrementally to reduce the training time. Incremental learning also collects training data to further alleviate the small sample problem. Experimental results show that this algorithm improves the performance of sketch retrieval. And it can be well extended to other retrieval domains like CBIR (content based image retrieval), 3D retrieval, and so on.
作者 梁爽 孙正兴
出处 《软件学报》 EI CSCD 北大核心 2009年第5期1301-1312,共12页 Journal of Software
基金 国家自然科学基金Nos.60721002 60373065 69903006 国家高技术研究发展计划(863)No.2007AA01Z334 新世纪优秀人才资助计划No.NCET-04-0460~~
关键词 草图检索 相关反馈 小样本增量有偏学习 主动式学习 有偏分类 增量学习 sketch retrieval relevance feedback small sample incremental biased learning active learning biased classification incremental learning
  • 相关文献

参考文献2

二级参考文献100

  • 1马翠霞,张凤军,陈由迪,戴国忠.支持概念设计的特征手势建模[J].计算机辅助设计与图形学学报,2004,16(4):559-565. 被引量:19
  • 2宋保华,叶军,于明玖,杨海成,陆长德.笔输入草图的分层识别[J].计算机辅助设计与图形学学报,2004,16(6):753-758. 被引量:18
  • 3孙正兴,彭彬彬,丛兰兰,孙建勇,张斌.在线草图识别中的用户适应性研究[J].计算机辅助设计与图形学学报,2004,16(9):1207-1215. 被引量:10
  • 4孙正兴,冯桂焕,周若鸿.基于草图的人机交互技术研究进展[J].计算机辅助设计与图形学学报,2005,17(9):1889-1899. 被引量:54
  • 5Ivan Sutherland, Sketchpad: A man-machine graphical communication system[A]. In: Proceedings of the 1963 Spring Joint Computer Conference[C]. Baltimore, MD: Spartan Books, 1963. 45~53
  • 6Herot C F. Graphical input through machine recognition of sketches[C]. In: Computer Graphics Proceedings, the 3rd Annual Conference Series, ACM SIGGRAPH, 1976. 97~102.
  • 7Negroponte N. Recent advances in sketch recognition[A]. In: American Federation of Information Processing National Computer Conference, Boston, MA, 1973(42): 663~675.
  • 8Microsoft Presspass, Digital Ink. Breakthrough technology in tablet PC: Brings the power of the Pen to the desktop[OL]. http:∥www.microsoft.com/presspass/features/2002/.
  • 9Microsoft Presspass, With launch of tablet PCs, Pen-based computing is a reality[OL]. http:∥www.microsoft.com/presspass/features/2002/.
  • 10Walid G Aref, Daniel Barbará, Daniel P. Lopresti, Ink as a first-class datatype in multimedia databases[A]. In: Multimedia Databases[C], New York: Springer-Verlag, 1995. 113~163.

共引文献56

同被引文献25

  • 1李彬,梁爽,孙正兴.基于空间关系的手绘草图检索[J].计算机科学,2005,32(12):227-231. 被引量:8
  • 2CIRESAN D,MEIER U,SCHMIDHUBER J. Multi-column deep neural networks for image classification[A].Rhode Island,USA,2012.3642-3649.
  • 3XU Y,ZHU J Y,CHANG E. Multiple clustered instance learning for histopathology cancer image classification, segmentation and clus-tering[A].Rhode Island,USA,2012.964-971.
  • 4VOLPI M,TUIA D,KANEVSKI M. Memory-based cluster sampling for remote sensing image classification[J].{H}IEEE Transactions on Geoscience and Remote Sensing,2012,(08):3096-3106.
  • 5SETTLES B. Active Learning Literature Survey[R].Madison:Univer-sity of Wisconsin,2010.
  • 6LEWIS D D,CATLETT J. Heterogenous uncertainty sampling for supervised learning[A].New Brunswick,NJ,USA,1994.148-156.
  • 7OLSSON F. A Literature Survey of Active Machine Learning in the Context of Natural Language Processing[R].Swedish Institute of Computer Science,2009.
  • 8FU Y,ZHU X,LI B. A survey on instance selection for active learn-ing[J].{H}Knowledge and Information Systems,2013,(02):249-283.
  • 9JOSHI A J,PORIKLI F,PAPANIKOLOPOULOS N P. Scalable active learning for multi-class image classification[J].{H}IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,(11):2259-2273.
  • 10LI X,GUO Y. Adaptive active learning for image clafiscsiation[A].Portland,Oregon,USA,2013.859-866.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部