期刊文献+

一个基于自组织特征映射网络的混合神经网络结构(英文) 被引量:4

Hybrid Neural Network Architecture Based on Self-Organizing Feature Maps
下载PDF
导出
摘要 将ICBP网络模型引入BP-SOM(self-organizing feature maps)网络体系结构,并构建了一个基于SOM模型的集成型网络ICBP-SOM.BP-SOM是Ton Weijters提出的一种学习算法,它的目标是克服BP网络在特定类型的学习样本中存在的知识推广性方面的严重缺陷.提出此集成型网络的动机是,利用BP-SOM良好的知识解释能力和ICBP网络良好的推广性和自适应性构造一个ICBP-SOM模型,它具有良好的知识表示能力和极具竞争力的推广性能.在6个基准数据集上的实验结果验证了这一集成型网络的可行性和有效性. An SOM(self-organizing feature maps)-based integrated network, namely ICBP-SOM, is constructed by applying the ICBP network model to the BP-SOM architecture. BP-SOM is a learning algorithm put forward by Ton Weijters, which aims to overcome some of the serious limitations of BP in generalizing knowledge from certain types of learning material. The motivation of presenting the integration is to employ BP-SOM good knowledge interpretation ability and the ICBP good generalization and adaptability to construct an ICBP-SOM, which processes favorable knowledge representation capability and competitive generalization performance. The experimental results on six benchmark data sets validate the feasibility and effectiveness of the integration.
出处 《软件学报》 EI CSCD 北大核心 2009年第5期1329-1336,共8页 Journal of Software
基金 Supported by the National Natural Science Foundation of China under Grant No.60773061 the Jiangsu Ph.D.Students Innovative Foundation of China under Grant No.BCXJ05-05~~
关键词 神经网络 圆型反向传播网络 改进的圆型反向传播网络 自组织特征映射 BP—SOM 分类 neural network circular back-propagation neural network (CBP) improved circular back-propagation neural network (ICBP) self-organizing feature maps (SOM) BP-SOM classification
  • 相关文献

参考文献15

  • 1Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation. In: Proc. of the Parrallel Distributed Processing: Explorations in the Microstructure of Cognition 1-Foundations. 1986. 318-362.
  • 2Weijters A. The BP-SOM architecture and learning rule. Neural Processing Letters, 1995,2(6):13-16.
  • 3Kohonen T. Self-Organisation and Associative Memory. Berlin, Springer-Verlag, 1989.
  • 4Ridella S, Rovetta S, Zunino R. Circular back-propagation networks embed vector quantization. IEEE Trans. and Neural Networks, 1999,10(4) :972-975.
  • 5Dai Q, Chen SC, Zhang BZ. Improved CBP neural network model with applications in time series prediction. Neural Processing Letters, 2003,18:197-211.
  • 6Dai Q, Chen SC. Chained DLS-ICBP neural networks with multiple steps time series prediction. Neural Processing Letters, 2005, 21(2):95-107.
  • 7Chen SC, Dai Q. DLS-ICBP neural networks with applications in time series prediction. Neural Computing & Application, 2005,14: 250-255.
  • 8Chen SC, Dai Q. Integrating the improved CBP model with kernel SOM. Neurocomputing, 2006,69(16-18):2208-2216.
  • 9Simon H, Neural Networks. A Comprehensive Foundation. Prentice-Hall, Inc., 1999.
  • 10Weijters A, van den Bosch, van den Herik HJ. Intelligible Neural Networks with BP-SOM. Marcke and Daelemans, 1997.27-36.

同被引文献36

  • 1冯登国,张阳,张玉清.信息安全风险评估综述[J].通信学报,2004,25(7):10-18. 被引量:308
  • 2李鹏飞,吴太成.桥梁健康监测技术研究综述[J].建筑监督检测与造价,2010(7):24-27. 被引量:3
  • 3马铭,周春光,张利彪,马捷.一种优化模糊神经网络的多目标微粒群算法[J].计算机研究与发展,2006,43(12):2104-2109. 被引量:9
  • 4李道伦,卢德唐,孔祥言,吴刚.基于BP神经网络的隐式曲面构造方法[J].计算机研究与发展,2007,44(3):467-472. 被引量:8
  • 5Robert Goss,Martin Botha,Rossouw von Solms.Utilizing fuzzy logic and neural networks for effective,preventative intrusion detection in a wireless environment [J]. ACM, 2007,226 (7): 29-35.
  • 6Aggarwal K K, Yogesh Singh, Pravin Chandra, et al. Sensitivity analysis of fuzzy and neural network models[J].ACM,2005,30 (4):1-4.
  • 7UNKELBACH J, YI S, SCHMIDHUBER J. An EM based training algorithm for recurrent neural networks [ J ]. Pro- ceedings of the 19th International Conference on Artificial Neural Networks. Berlin/Heidelberg: Springer-Verlag, 2009 : 964-974.
  • 8DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Trans- ferring naive Bayes classifiers for text classification [ C ]// Proceedings of the 22nd National Conference on Artificial Intelligence. Vancouver, Canada, 2007: 540-545.
  • 9RAINA R, BATI'LE A, LEE H, et al. Self-taught learn-ing: transfer learning from unlabeled data [ C ]//The Twen- ty-fourth International Conference on Machine Learning. Corvallis, USA, 2007: 759-766.
  • 10曾志强,高济.基于向量集约简的精简支持向量机[J].软件学报,2007,18(11):2719-2727. 被引量:16

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部