期刊文献+

改进模糊划分的FCM聚类算法的一般化研究 被引量:55

Research on Generalized Fuzzy C-Means Clustering Algorithm with Improved Fuzzy Partitions
下载PDF
导出
摘要 聚类分析是无监督模式识别中的一种重要方法,已广泛应用于数据挖掘、图像处理、计算机视觉、生物信息和文本分析中.在聚类算法中,模糊指数m对聚类结果有十分重要的影响.针对IFP-FCM算法模糊指数m被限定为2的问题,提出了一般化的改进模糊划分的FCM聚类算法GIFP-FCM.通过引入新的隶属度约束,解决了IFP-FCM算法模糊指数m的一般化问题;同时GIFP-FCM算法从Voronoi距离和竞争学习的角度对其鲁棒性和快速收敛性进行了合理解释;其次,通过引入模糊程度系数α,使得FCM算法和IFP-FCM算法分别表示为GIFP-FCM算法在α等于0和α趋于1时的特例.实验结果表明,GIFP-FCM算法较之于IFP-FCM和FCM算法具有更好的鲁棒性和参数适应性;在纹理图像分割中,GIFP-FCM也明显优于IFP-FCM和FCM算法. Cluster analysis is an important tool of unsupervised pattern recognition. It has been used in diverse fields such as data mining, biology, computer vision, and document analysis. The fuzziness index m has important influence on the clustering result of fuzzy clustering algorithms and it should not be forced to fix at the usual value m=2. In view of its distinctive features in applications and its limitation of having m =2 only, a recent advance of fuzzy clustering called fuzzy e-means elustering with improved fuzzy partitions (IFP-FCM) is extended in this paper and a generalized algorithm ealled GIFP-FCM for more effective clustering is proposed. By introducing a novel membership constraint function, a new objective function is constructed and GIFP-FCM clustering is derived. Me.anwhile, from the viewpoints of Voronoi distance and competitive learning, the robustness and convergence of the proposed algorithm are analyzed. The proposed GIFP-FCM algorithm not only inherits the merits of IFP-FCM, but also generalizes it so that the original limitation on the fuzziness index m can be removed. Furthermore, the classical fuzzy e-means algorithm (FCM) and IFP-FCM can be taken as two special cases of the proposed algorithm, and GIFP-FCM provides a reasonable link between FCM and IFP-FCM. Several experimental results including its application to noisy image texture segmentation demonstrate its average advantage over FCM and IFP-FCM in both clustering and robustness capability.
出处 《计算机研究与发展》 EI CSCD 北大核心 2009年第5期814-822,共9页 Journal of Computer Research and Development
基金 国家“八六三”高技术研究发展计划基金项目(2006AA10Z313) 国家自然科学基金项目(60773206,60704047) 国防应用基础研究基金项目(A1420461266)~~
关键词 聚类算法 竞争学习 模糊划分 Voronoi距离 纹理图像分割 clustering algorithm competitive learning fuzzy partition Voronoi distance image texture segmentation
  • 相关文献

参考文献15

  • 1修宇,王士同,吴锡生,胡德文.方向相似性聚类方法DSCM[J].计算机研究与发展,2006,43(8):1425-1431. 被引量:21
  • 2Hoppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models [J]. Journal of Approximate Reasoning, 2003, 32(2): 85-102
  • 3Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum, 1081
  • 4Bezdek J C, Hathaway R J, Sahin M J, et al. Convergence theory for fuzzy c-means: Counterexamples and repairs [J]. IEEE Trans on SMC, 1987, 17(5): 873-877
  • 5高新波,谢维信.模糊聚类理论发展及应用的研究进展[J].科学通报,1999,44(21):2241-2251. 被引量:100
  • 6Zhang Y J, Liu Z Q. Self-splitting competitive learning: A new on-line clustering paradigm [J]. IEEE Trans on Neural Network, 2002, 13(2) : 369-380
  • 7Wu S H, Liew A W, Hong Y, et al. Cluster analysis of gene expression data based on self-splitting and merging competitive learning [J]. IEEE Trans on Information Technology in Biomedicine, 2004, 8 (1) : 5-15
  • 8Xu L, Krzyak A, Oja E. Rival penalized competitive learning for clustering analysis, RBF net and curve detection [J]. IEEE Trans on Neural Network, 1993, 4(4): 636-649
  • 9魏立梅,谢维信.对手抑制式模糊C-均值算法[J].电子学报,2000,28(7):63-66. 被引量:18
  • 10Blake C L, Merz C J. UCI repository of machine learning databases [D]. Irvine, CA: University of California, Department of Information and Computer Science, 1998

二级参考文献41

  • 1郭伟,王士同,程科,韩斌.视觉采样聚类方法VSC[J].电子与信息学报,2006,28(4):597-602. 被引量:2
  • 2Kantardzic Mehmed. Data Mining: Concepts, Models,Methods, and Algorithms [M]. New York: Wiley-IEEE Press, 2002
  • 3Richard O Duda, Peter E Hart, David G Stork. Pattern Classification [M]. 2nd edition. New York: John Willey and Sons Ltd, 2000
  • 4A Strehl, J Ghosh, R Mooney. Impact of similarity measures on web-page clustering [C]. In: Proc of the 7th National Conf on Artificial Intelligence: Workshop of AI for Web Search. Menlo Park, CA: AAAI Press, 2000. 58-64
  • 5K V Mardia, P Jupp. Directional Statistics [ M]. 2nd edition.New York: John Willey and Sons Ltd, 2000
  • 6I S Dhillon, E M Mareotte, U Roshan. Diametrical clustering for identifying anti-correlated gene clusters [J]. Bioinformatics,2003, 19(13): 1612-1619
  • 7A Banerjee, I S Dhillon, J Ghosh, et al. Generative model based clustering of directional data [C]. Conference on Knowledge Discovery in Data, Washington, DC, 2003
  • 8I S Dhillon, D S Modha. Concept decompositions for large sparse text data using clustering [J]. Machine Learning, 2001,42(1) : 143-175
  • 9Frank Hoppner, Frank Klawonn. A contribution to convergence theory of fuzzy e-means and derivatives [J]. IEEE Trans on Fuzzy Systems, 2003, 11(5) : 682-694
  • 10I S Dhilon, S Suvrit. Modeling data using directional distribution [ OL]. http ://www. cs. utexas. edu/users/suvrit/work/, 2003

共引文献135

同被引文献502

引证文献55

二级引证文献446

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部