摘要
研究如下N维奇异半线性椭圆方程△u+f(x,u)=0,x∈R^N(N≥3),其中函数f:R^N×R_+→R_+连续,在u=0有奇异性;采用上-下解方法给出该方程具有满足如下性质的有界正整体解u的条件:u∈C_(loc)^(2+θ)(R^N)使得■u(x)=0且u(x)≥εmin{1,|x|^(2-N)},其中ε>0是常数;并证明:若条件添加"f关于u单调不增"的限制,则这种解是唯一的.
This paper is dealt with N-dimensional semilinear elliptic equation of the form△u+f(x,u)=0,x∈R^N(N≥3),where f:R^N×R+→R+is a continuous function with a singularity at u = 0. By means of super-subsolution method, some sufficient conditions are obtained for the equation to have a positive entire solution u∈Cloc^2+θ(R^N)such that lim|x|→∞u(x)=0,u(x)≥εmin{1,|x|^2-N}where ε 〉 0 is a constant.It is also proved that if f is non-increasing in u, then the above solution is unique.
出处
《系统科学与数学》
CSCD
北大核心
2009年第4期433-439,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(10671173)资助课题.
关键词
奇异半线性椭圆方程
非径向
基态解
上-下解方法
Singular semilinear elliptic equation, nonradial, ground state solution, supersubsolution method