期刊文献+

一类新型具有两个独立变量的不连续函数的积分不等式 被引量:2

SOME NEW INTEGRAL INEQUALITIES FOR DISCONTINUOUS FUNCTION OF TWO INDEPENDENT VARIABLES
原文传递
导出
摘要 主要研究了具有两个独立变量的不连续函数(有跳跃间断点)的一类更为广泛的新型积分不等式(Wendroff型),得出了一些新的结论,从而推广了前人的工作. In this article, some new integral inequalities of discontinuous function in two independent variables is investigated, some new results are obtained, which generalize some existing conclusions.
出处 《系统科学与数学》 CSCD 北大核心 2009年第4期440-450,共11页 Journal of Systems Science and Mathematical Sciences
关键词 积分不等式 不连续函数 独立变量 Wendroff型 Integral inequality, discontinuous function.
  • 相关文献

参考文献8

  • 1Snow D R. Gronwall's inequality for systems of partial differential equations in two independent variable. Proc. Amer. Math. Soc., 1972, 33: 46-54.
  • 2Borysenko S D. Integro-sum inequalities for functions of many independent variables. Differ. Equ., 1989, 25(9): 1634-1641.
  • 3Samoilenko A M, Borysenko S D. On functional inequalities of Bihari type for discontinuous functions. Uspekhi Mat. Nauk., 1998, 53(4): 147-148.
  • 4Borysenko D S. About one integral inequality for piece-wise continuous functions. Proceedings of the International Kravchuk Conference, Kyiv, 2004.
  • 5Sun Yungong. On retarded integral inequalities and their applications. J. Math. Anal, Appl., 2005, 301:265 -275.
  • 6Sergiy Borysenko, Gerardo Iovane. About some new integral inequalities of wendroff type for discontinuous functions. Nonlinear Analysis, 2007, 66: 2190-2203.
  • 7Iovane G. Some new integral inequalities of Bellman-Bihari type with delay for discontinuous functions. Nonlinear Analysis, 2007, 66: 498-508.
  • 8Gallo A, Piccirillo A M. About new analogies of Gronwall-Bellman-Bihari type inequalities for discontinuous and estimated solutions for impulsive differential systems. Nonlinear Analysis, 2007, 67: 1551-1559.

同被引文献32

  • 1Bellman R.The stability of solutions of linear differential equations[J].Duke Math J,1943,10:643-647.
  • 2Zhang W,Deng S.Projected Gronwall-Bellman’s inequality for integrable functions[J].Math Comput Model,2001,34:394-402.
  • 3Wang W S.A generalized retarded Gronwall-like inequality in two variables and applications to BVP[J].Appl Math Comput,2007,191(1):144-154.
  • 4Wang W S.Estimation on certain nonlinear discrete inequality and applications to boundary value problem[J].Adv DifferenceEqns,2009,2009:708587.
  • 5Choi S K,Deng S,Koo N J,et al.Nonlinear integral inequalities of Bihari-Type without class H[J].Math Inequ Appl,2005,8(4):643-654.
  • 6Xu R,Sun Y G.On retarded integral inequalities in two independent variables and their applications[J].Appl Math Comput,2006,182:1260-1266.
  • 7Kim Y H.Gronwall,Bellman and Pachpatte type integral inequalities with applications[J].Nonl Anal,2009,71:2641-2656.
  • 8Lipovan O.A retarded Gronwall-like inequality and its applications[J].J Math Anal Appl,2000,252:389-401.
  • 9Agarwal R P,Deng S,Zhang W.Generalization of a retarded Gronwall-like inequality and its applications[J].Appl MathComput,2005,165:599-612.
  • 10Agarwal R P,Kim Y H,Sen S K.New retarded integral inequalities with applications[J].J Inequ Appl,2008,2008:908784.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部