期刊文献+

一类投资组合选择的线性规划方法研究 被引量:2

A STUDY ON A KIND OF LINEAR PROGRAMMING METHODS IN PORTFOLIO SELECTION
原文传递
导出
摘要 如何在摩擦市场下构建最优组合一直是一个非常有意义的问题.人们通常在有效前沿上选择最优的投资组合,但是值得注意的是,如果我们考虑摩擦因素,原本的有效组合将不再有效.探讨如何在无风险借贷利率不同的摩擦市场下构建投资组合模型.为了得到最优策略,我们先利用Karush-Kuhn-Tucker条件给出一类线性规划问题求解方法,然后具体阐述如何将投资决策问题转化为可以求解的线性规划问题,最后给出在无风险借贷利率不同的情况下投资组合的有效边界. In this paper, we will study now to set up portfolio selection moael m a frictional market. In order to get the optimal strategy, we transform the portfolio problem into a linear programming problem which can be solved by using Karush-Kuhn-Tucker condition. The efficient frontier for portfolio model is also given exactly.
作者 余湄 汪寿阳
出处 《系统科学与数学》 CSCD 北大核心 2009年第4期536-546,共11页 Journal of Systems Science and Mathematical Sciences
基金 对外经济贸易大学211项目第3期资助.
关键词 投资组合 线性规划 无风险借贷利率 交易费. Linear programming, portfolio selection, transaction cost, borrowing andlending.
  • 相关文献

参考文献17

  • 1Markowitz H. Portfolio selection. J. Finance, 1952, 7:77- 91.
  • 2Linter J. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics, 1965, 47: 13-37.
  • 3Tobin J. Liquidity preference as behavior towards risk. Review of Economic Studies, 1958, 26(1): 65-86.
  • 4Tobin J. The Theory of Portfolio Selection,. London: Macmillan, 1965.
  • 5Zhang Shunming, Wang Shouyang and Deng Xiaotie. Portfolio frontier with different interest rates for borrowing and lending. Journal of Global Optimization, 2004, 28(1): 67-95.
  • 6Konno H and Yamazaki H. Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market. Management Sei., 1991, 37: 519-529.
  • 7Ogryczak W and Ruszczynski A. From stochastic dominance mean-risk model: Semi-deviation as risk measure. European J. Oper. Res., 1999, 116: 33-50.
  • 8Konno H and Shirakawa H. Existence of a nonnegative equilibrium price vector in the mean-variance capital market. Mathematical Finance, 1995, 5: 233-246.
  • 9Konno H and Wijayanayake A. Portfolio optimization problem under concave transaction costs and minimal transaction unit constraints. Math. Program, 2001, 89:233- 250.
  • 10Konno H and Wijayanayake A. Minimal cost index tracking under concave transaction costs. Int. J. Theor. Appl. Finance, 2001, 4: 939-957.

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部