期刊文献+

Ni/硅橡胶复合材料的压敏与介电特性 被引量:5

Pressure sensitivity and dielectric properties of Ni/silicone rubber composite
原文传递
导出
摘要 采用硅橡胶(110型)与金属(Ni粉)按质量比1∶2配料,经过特殊的制备工艺,合成金属Ni/硅橡胶高分子复合材料。分别测量样品的压敏效应和介电特性。结果表明:在不同应力作用下,样品的电阻从1×1012Ω降到10Ω,其变化范围为11个数量级;在恒应力作用下,样品的电阻随时间的增加而减小,表现出"电阻蠕动"现象;室温下,样品的电容和介电损耗都随频率的增加而减小,随应力的增加而增大,其原因是在样品中形成了以高分子为绝缘层、金属Ni粉为导电填料的相互隔离且平行的超电容网络微观结构。在外力作用下,这种微观结构中每一个电容单元的间距逐渐减小而电容逐渐增大,致使样品的电容有大幅度增加;介电损耗是由于样品的电阻率减小,电导增大,使部分电能转化为热能。 Nickel - silicone rubber polymer composites were prepared using silicone rubber and nickel powder at a ratio of 1 : 2. The effect of pressure and the dielectric properties of the composite samples at room temperature were measured. The results show that the resistance of samples under modest compression can fall from about 1 × 10^12Ω to〈10Ω, a change of 11 orders of magnitude. A resistance creep has also been observed: the resistance of samples under constant stress decreases with time. The permittivity and dielectric loss of the composite at room temperature decrease with increasing frequency but increase with application of uniaxial stress. This is because the special microstructure of a capacitor network formed by the metallic filler particles and the insulating polymer materials of the composite. Under uniaxial pressure, the distance between metallic particles decreases, leading to an increase in capacitance and conductivity, which in turn results in an increase in dielectric loss.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第2期37-40,共4页 Acta Materiae Compositae Sinica
基金 国家自然科学基金(60571063)资助课题 教育部留学回国人员科研启动基金(教外司留[2005]55)资助课题 河南省自然科学基金(0611051100)资助课题
关键词 金属/高分子复合材料 介电特性 压敏效应 metal/polymer composite dielectric property piezoresistive effect
  • 相关文献

参考文献19

二级参考文献122

共引文献1167

同被引文献59

  • 1杨立新,邸荣光,刘仕兵.轨道交通杂散电流腐蚀的监测及防护研究[J].铁道工程学报,2006,23(1):19-21. 被引量:9
  • 2陈永良,宋义虎,郑强,章明秋.聚甲基乙烯基硅氧烷/炭黑复合体系的电阻弛豫行为[J].高分子学报,2006,16(2):274-278. 被引量:6
  • 3宋修宫,王继辉,高国强.RTM工艺中树脂固化温度与介电性能[J].复合材料学报,2007,24(1):18-21. 被引量:5
  • 4王雁冰,黄志雄,张联盟.导电炭黑/氯化丁基橡胶力学和电性能的研究[J].粘接,2007,28(3):15-17. 被引量:8
  • 5Evgency Z M. Giant piezoresistivity of nanocomposiles with the tunnel conductivity [J]. Sensors and Actuators A: Physical, 2009, 153(2): 187-190.
  • 6Mu Minfang, Amanda M W, John M T, Karen I W. Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes[J]. Polymer, 2008, 49(5): 1332-1337.
  • 7Azulay D, Eylon M, Eshkenazi O, Toker D, Balberg M, Shimoni N, Millo O, Balberg I. Electrical-thermal switching in carbon- black - polymer composites as a local effect [J]. Phys Rev Lett, 2003, 90(23) : 2366011-2366014.
  • 8Xue Qingzhong. The influence of partical shape and size on electric conductivity of metal - polymer composites [J]. European Polymer Journal, 2004, 40(2): 323-327.
  • 9Bloor D, Donnelly K, Hands P J, Laughlin P, Lussey D. A metal polymer composite with unusual properties [J]. J Phys D, 2005, 38(16), 2851-2860.
  • 10Martin J E, Anderson R A, Odinek J, Adolf D, Williamson J. Controlling percolation in field- structured particle composites: Observations of giant thermoresistance, piezoresistance, and chemiresistance [J]. Phys Rev B, 2003, 67(9) : 094207-094217.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部