期刊文献+

复合材料蒙皮加筋壁板结构成本-质量优化设计 被引量:7

Cost-weight optimization design of composite stiffened panel
原文传递
导出
摘要 介绍了复合材料整体化结构的制造成本估算方法。将成本作为主要的优化设计参数,针对蒙皮加筋壁板结构采用共固化成型技术,考虑结构约束及与成型工艺相关的制造约束,提出了在压力和剪切力作用下复合材料蒙皮加筋壁板结构基于成本-质量平衡的优化设计方法。以蒙皮T形加筋为例,分别选取最小质量和最小成本为优化目标参量验证工时估算模型的有效性。讨论了7种常见形状加筋整体化壁板结构的制造成本和质量,估算值与实验值吻合较好。研究结果表明,蒙皮T形筋制造工时最短而质量仅高于最小质量J形结构的0.5%,是基于成本-质量平衡优化的最佳选择结构。研究结果为复合材料整体化蒙皮加筋结构设计提供指导。 A method of estimating the manufacturing cost for composite stiffened panels was proposed on the basis of co-curing process. Considering cost as a major design parameter, an approach to optimize the configuration that minimizes the cost and weight of composite stiffened panels under compression and shear was presented, under structural requirements and manufacturing constraints. Based on the case of panel with T stiffener, the objective function of cost and weight was minimized respectively to verify the cost estimation model. The results estimated are in good agreement with practical process time of lay up. In addition, the stiffened panel cost and weight were discussed for seven stiffener cross sectional shapes. It is found that T stiffener gives the lowest time configuration while its weight is only 0. 5%more than that of the J stiffener, while J is of the lowest weight among seven stiffeners. The optimization conclusion can be applied to guide design of composite stiffened panel.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2009年第2期187-194,共8页 Acta Materiae Compositae Sinica
基金 973国防项目
关键词 复合材料加筋壁板 制造成本 优化设计 约束 composite stiffened panel manufacturing cost optimization design constraint
  • 相关文献

参考文献15

  • 1Butterfield J, Yao H, Curran R, Price M, Armstrong C G, Raghunathan S. Integration of aerodynamic, structural, cost and manufacturing considerations during the concept-ual design of a thrust reverser cascade, AIAA - 2003 - 1896 [R].New York: AIAA, 2003: 7-19.
  • 2Curran R, Rothwell R, Castagne S. A numerical method for cost-weight optimization of stringer-skin panels [C] // Proceedings of 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. California: AIAA, 2004: 1-16.
  • 3Swanson G D, Gurdal Z, Starnes J H. Structural efficiency study of graphite -epoxy aircraft rib structures [J]. Journal of Aircraft, 1990, 27(3): 1011-1020.
  • 4Bushnell D. Optimum design of composite stiffened panels under combined loading [C]// Proceedings of 34th AIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. CA: Technical Papers, 1993: 1549-1562.
  • 5Gutowski T, Hoult D, Dillon G, Neoh E, Muter S, Tse M. Development of a theoretical cost model for advanced composite fabrication [J]. Composites Manufacturing, 1994, 5(4): 231-239.
  • 6Haffner S M. Cost modeling and design for manufacturing guidelines for advanced composite fabrication [D]. Cambridge: Massachusetts Institute of Technology, 2002: 137-142.
  • 7Haffner S M, Gutowski T G. Manufacturing time estimation laws for composite materials [C]// NSF Conference. Vancouver, BC: [s. n.], 1999.
  • 8Mabson G E, Flynn B W. The use of COSTADE in developing composite commercial aircraft fuselage structures [C] // Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Conference. Hilton Head Island, USA; AIAA, 1994: 18-20.
  • 9Whitney J M. Structural analysis of laminated aniso - tropic plates [M]. Lancaster: Technomic Publishing, 1987: 234- 278.
  • 10Timoshenko S, Woinowsky - Krieger S. Theory of plates and shells [M].New York: McGraw Hill, 1959: 230-297.

二级参考文献32

共引文献48

同被引文献69

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部