期刊文献+

(∈,∈∨q_((λ,μ)))-模糊子半群和(∈,∈∨q_((λ,μ)))-模糊完全正则子半群 被引量:33

(∈,∈∨q_((λ,μ)))-Fuzzy Subsemigroup and(∈,∈∨q_((λ,μ)))-Fuzzy Completely Regular Subsemigroups
下载PDF
导出
摘要 文中给出了(∈,∈∨q(λ,μ))-模糊子半群,(∈,∈∨q(λ,μ))-模糊完全正则子半群和广义模糊完全正则子半群的概念及它们之间的等价刻画。当λ=0,μ=0.5时,(∈,∈∨q(0,0.5))-模糊子半群和(∈,∈∨q(0,0.5))-模糊完全正则子半群即为(∈,∈∨q)-模糊子半群和(∈,∈∨q)-模糊完全正则子半群;当λ=0,μ=1时,(∈,∈∨q(0,1))-模糊子半群和(∈,∈∨q(0,1))-模糊完全正则子半群即为Rosenfe ld意义下的模糊子半群和模糊完全正则子半群,这将通常的模糊代数与(∈,∈∨q)-模糊代数进行了统一和推广。 The paper introduces the definition of ( ∈, ∈∨ q(λ,μ) )-fuzzY subsemigroup, ( ∈, ∈ ∨ q(λ,μ))-fuzzy completely regular subsemigroups and generalized completely regular subsemigroups and discusses the equivalence conditions between them. When λ = 0,μ = 0.5 ,we can get ( ∈, ∈∨ q)-fuzzy subsemigroup and ( ∈, ∈ V q)-fuzzy completely regular subsemigroups; When λ = 1 ,μ = 0, we can get the usual results. We unify and generalize (∈, ∈ ∨ q)-fuzzy algebra and Rosenfeldg algebra to ( ∈, ∈ ∨ q(λ,μ) )-fuzzy algebra.
作者 廖祖华 陈敏
机构地区 江南大学理学院
出处 《江南大学学报(自然科学版)》 CAS 2009年第2期242-244,共3页 Joural of Jiangnan University (Natural Science Edition) 
基金 江苏省教育科学"十五"规划项目(D/2006/01/171)
关键词 半群 (∈ ∈∨q(λ μ))-模糊子半群 (∈ ∈∨q(λ μ))-模糊完全正则子半群 广义模糊子半群 广义模糊完全正则子半群 semigroup, ( ∈, ∈∨ q(λ,μ) )-fuzzy subsemigroup, ( ∈, ∈∨ q(λ,μ))-fuzzy completely regular subsemigroups, generalized fuzzy subsemigroup, generalized fuzzy completely regular subsemigroup
  • 相关文献

参考文献6

二级参考文献54

  • 1马骥良 于纯海.模糊代数选论[M].北京:学苑出版社,1989..
  • 2[1]ZADEH L A. Fuzzy sets[J]. Inform and Control, 1965,6: 338-353.
  • 3[4]YUAN Xu-hai,CHENG Zhang, REN Yong-hong. Generalized fuzzygroups and mang-valued implication[J]. Fuzzy set and systems, 2003,138: 205- 211.
  • 4[2]廖祖华,(∈,∈Vq)-型模糊子半群与(∈,∈V q)-型模糊完全正则子半群[A].模糊理论及应用[C].保定:河北大学出版社.1998:310~314.
  • 5[3]Rosenfeld A. Fuzzy groups[J], J. Math. Anal. Appl. , 1971,35:512 ~ 517.
  • 6[5]X.H. Yuan, C. Zhang, Y. H. Ren, Generalized fuzzy groups and many - valued implications[J]. Fuzzy sets and Systems 138(2003) :205 ~ 211.
  • 7[6]L.A. Zadeh,Fuzzy sets[J]. Inform and control 8(1965): 338 ~ 353.
  • 8[1]S.K. Bhakat, On the Definition of a Fuzzy Subgroup[J]. Fuzzy Sets and Systems, 51(1992)235 ~ 241.
  • 9[2]J.G. Brown, A note on fuzzy sets[J], Inform. and Control 18(1971)32 ~ 39.
  • 10[3]A.K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces[J], J. Math. Anal.Appl. 58(1977)135 ~ 146.

共引文献101

同被引文献262

引证文献33

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部