摘要
Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conjecture, that is, for n 〉 9/ 2k^2 + 37/2+ 14 and every graph G on n vertices with e(G) 〉 1/2 (k- 1)n, we prove that there exists a graph G' on n vertices having the same degree sequence as G and containing every tree T with k edges as a subgraph.
Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conjecture, that is, for n 〉 9/ 2k^2 + 37/2+ 14 and every graph G on n vertices with e(G) 〉 1/2 (k- 1)n, we prove that there exists a graph G' on n vertices having the same degree sequence as G and containing every tree T with k edges as a subgraph.
基金
Supported by National Natural Science Foundation of China (Nos. 10861006, 10401010)