期刊文献+

黄孢原毛平革菌乙醇脱氢酶基因的克隆和表达 被引量:2

Molecular cloning and expression of alcohol dehydrogenase gene of Phanerochaete chrysosporium
下载PDF
导出
摘要 乙醇是黄孢原毛平革菌(Phanerochaete chrysosporium)在限氧培养条件下重要的代谢物之一,为了更好的理解P.chrysosporium在低氧条件下的代谢机制,文章从P.chrysosporium中克隆到一个长1071 bp的乙醇脱氢酶基因PCAdh1 cDNA,该基因编码一个由356个氨基酸组成的蛋白质,它与其他生物的乙醇脱氢酶的氨基酸序列的相似性很低,但酶催化活性位点序列却高度保守。将PCAdh1在大肠杆菌中表达,并获得有酶活性的重组蛋白。纯化的蛋白质用于制备抗体。半定量RT-PCR和Western blot分析结果显示,在限氧条件的培养过程中,PCAdh1基因在mRNA水平和蛋白水平上都保持相对稳定,表明该基因的表达是组成型的;但从菌丝体提取的粗蛋白中的乙醇脱氢酶活性却随着培养时间的增加及氧气含量的持续降低而逐渐升高,这暗示P.chrysospo-rium中存在其他低氧诱导型乙醇脱氢酶基因的表达。 When Phanerochaete chrysosporium is grown under oxygen-limited condition, ethanol is one of the important metabolites. In order to understand the metabolic mechanism of P chrysosporium grown under oxygen-limited condition, a cDNA sequence (1 071 bp) designated "PCAdhl" encoding an alcohol dehydrogenase (ADH) was cloned from the filamentous white-rot fungus P chrysosporium. PCAdhl gene encodes a protein of 356 amino acid residues. Although the catalytic domain and coenzyme-binding domain were highly conserved, the protein sequence of PCAdhl showed a low level of similarity to other known ADH. The recombinant PCAdhl protein was expressed in Escherichia coli and its enzyme activity was detected. The protein was purified and used to prepare antibody. Semi-quantitative RT-PCR and Western blot demonstrated that the expression level of PCAdhl in P. chrysosporium remained stable despite the lowered oxygen content, indicating that the gene expression is constitutive. But with the reduction of oxygen content, the overall activity of ADH from the crude mycelia proteins was increased during the growing periods, implying that the expression of other Adh genes in P chrysosporium is inductive.
出处 《遗传》 CAS CSCD 北大核心 2009年第5期546-551,共6页 Hereditas(Beijing)
基金 国家自然科学基金资助项目(编号:30470984)资助
关键词 黄孢原毛平革菌 乙醇脱氢酶 基因克隆 基因表达 RT-PCR 蛋白质印迹 Phanerochaete chrysosporium alcohol dehydrogenase gene cloning gene expression RT-PCR Western blot
  • 相关文献

参考文献24

  • 1Gold MH, Alic M. Molecular biology of the lignin- degrading basidiomycete Phanerochaete chrysosporium. Microbiol Mol Biol Rev, 1993, 57(3): 605-622.
  • 2Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 2007, 44(2): 77-87.
  • 3Reddy CA, D'Souza TM. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev, 1994, 13(2-3): 137-152.
  • 4Bar-Lev SS, Kirk TK. Effects of molecular oxygen on lignin degradation by Phanerochaete chrysosporium. Biochem Biophys Res Commun, 1981, 99(2): 373-378.
  • 5Reid ID, Seifert KA. Effect of an atmosphere of oxygen on growth, respiration and lignin degradation by white-rot fungi. Can J Bot, 1982, 60(3): 252-260.
  • 6Bes B, Pettersson B, Lennholm H, Iversen T, Eriksson KE. Synthesis, structure, and enzymatic degradation of an extracellular glucanproduced in nitrogen-starved cultures of the white-rot fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem, 1987, 9(4): 310-318.
  • 7Kenealy WR, Dietrich DM. Growth and fermentation responses of Phanerochaete chrysosporium to O2 limitation. Enz Microb Techno, 2004, 34(5): 490-498.
  • 8Pavarina EC, Durrant LR. Growth of lignocellulosic-fermenting fungi on different substrates under low oxygenation conditions. Appl Biochem Biotech, 2002, 98 (2): 663-677.
  • 9Danielsson O, Atrian S, Luque T, Hjelmqvist L, Gonzalez-Duarte R, Jomvall H. Fundamental molecular differences between alcohol dehydrogenase classes. Proc Natl Acad Sci USA, 1994, 91(11): 4980-4984.
  • 10Reid MF, Fewson CA. Molecular characterization of microbial alcohol dehydrogenases. Crit Rev Microbiol, 1994, 20(1): 13-56.

同被引文献22

  • 1Jie Lü,Xiang Jin,Pei-Hong Mao,et al.Transfer of Ephedra Genomic DNA to yeasts by ion implantation[J].Appl Biochem Biotechnol,2009,158(3):571-581.
  • 2Yamazaki K,Tamaki T,Uzawa S,et al.Participation of C6-C1 unit in the biosynthesis of ephedrine in Ephedra[J].Phetochemistry,1973,12:2877-2882.
  • 3Coruzzi G,Last R.Amino Acid[A].In:Biochemistry & Molecular Biology of Plants[M].Buchanan BB,Gmissem W,Jones RL,eds-inchief Rockville:American Soeiety of Plant Physiologists,2000:358-410.
  • 4Danielsson O,Atrian S,Luque T,et al.Fundamental molecular differences between alcohol dehydrogenase classes[J].Proc Natl Acad Sci USA,1994,91 (11):4980-4984.
  • 5Reid MF,Fewson CA.Molecular characterization of microbial alcohol dehydrogenases[J].Crit Rev Microbiol,1994,20 (1):13-56.
  • 6Christie PJ,Hahn M,Walbot V.Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings[J].Plant Physiol,1991,95(3):699-706.
  • 7Kelly J,Drysdale MR,Sealy-Lewis HM,et al.Alcohol dehydrogenase Ⅲ in Aspergillus is anaerobically induced and post-transcriptionally regulated[J].Mol Gen Genet,1990,222(2-3):323-328.
  • 8Jelski W, Szmitkowski M. Alcohol dehydrogenase(ADH) and al- dehyde dehydrogenase (ALDH) in the cancer diseases. Clinica Chimica Acta, 2008, 395 (1-2) : 1-5.
  • 9Hellgren M, Stromberg P, Galleg O, et al. Alcohol dehydrogen- ase 2 is a major hepatic enzyme for human retinol metabolism. Cell Mol Life Sci, 2007, 64(4) : 498-505.
  • 10Lee SL, Chau GY, Yan CT, et al. Functional assessment of hu- man alcohol dehydrogenase family in ethanol metabolism:signifi- cance of first-pass metabolism. Alcoho Clin Exp Res, 2006, 30 (7) : 1132-1142.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部