期刊文献+

基于WA和LS-SVM的净化过程钴离子浓度预测 被引量:1

Prediction of Cobalt Ion Concentration in the Purification Process Based on WA and LS-SVM
下载PDF
导出
摘要 针对硫酸锌溶液净化过程具有多变量耦合、强非线性、大时滞性等特点和过程数据具有高噪声、非平稳等特性,提出了一种结合小波分析和最小二乘支持向量机方法的净化过程钴离子浓度预测方法;该方法通过小波分解,将钴离子浓度序列分解得到不同的高频和低频序列,对分解得到的各序列重构并采用LS-SVM方法进行预测,最后将各预测结果合成得到钴离子浓度的预测值;仿真结果表明,该模型具有较高的预测精度,能为生产操作提供有益的指导。 Aiming at the purification process feature of multi-variable coupling, non-linear and large time delay and the high noise and non-stationary of the process data, a prediction model based on wavelet analysis (WA) and least squares support vector machine (LS-SVM) is proposed to enhance the prediction precision of cobalt ion concentration. Firstly, the original data series of cobalt ion concentration is decomposed to different series by WA. Then, each decomposed series is reconstructed and predicted by LS-SVM. Finally, the prediction result is obtained by reconstruction of the prediction results of LS-SVM models. The simulation results show that the predictive results are close to the practical values. The model possesses higher precision and practicability.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第4期652-654,共3页 Computer Measurement &Control
基金 湖南省科技厅科技计划项目(2008CK3072)
关键词 净化过程 浓度预测 小波分析 最小二乘支持向量机 purification process concentration prediction wavelet analysis Least squares support vector machine
  • 相关文献

参考文献9

二级参考文献38

共引文献160

同被引文献17

  • 1] Bckman O, stvold T. Products formed during cobalt cementation on zinc in zinc sulfate electrolytes. Hydro- metallurgy, 2000,54 ( 2 ) :65-78.
  • 2Suykens J, Vandewalle J. Least squares support vector machine Classifiers. Neural Processing Letters, 1999,19 ( 3 ) : 293-300.
  • 3Esen H, Ozgen F, Esen M. Modeling of a new solar air heater through least squares support vector machine. Ex- pert Systems with Applications, 2009, 36 ( 7 ) : 10673- 10682.
  • 4Zhao J, Zhang X P, Wang W. Gradient optimized LSS- VM for prediction of gas consumption in steel industry. ICIC Express Letters, 2011,4 (6) :2069-2073.
  • 5Zhen C, Yi H. Modeling and simulation of the GA-LSS- VM-based soft measurement for torque. Applied Mechan- ics and Materials, 2010,45 ( 1 ) :733-737.
  • 6Chappelle 0, Vapnik V, Bousquet O. Choosing multiple parameters for support vector machines. Machine Learn- ing, 2002, 46( 1 ) : 131-160.
  • 7Jari N. Statistical analysis of cobalt removal from zinc electrolyte using the arsenic-activated process. Hydromet- allurgy, 2004,73 ( 1 ) : 123-132.
  • 8Sakiohi G. Purification of zinc leaching solution: Mecha- nism of removal of cobalt by zinc dust with arsenious ox- ide and copperion. Metallurgical review of MMJJ, 1997, 14( 1 ) :37-52.
  • 9Jacob C, Cohen P. Applied Multiple Regression/Correla-tion Analysis for the Behavioral Sciences (Third Edi- tion). Lawrence Erlbaum Associates, New Jersey, American, 2003.69-71.
  • 10Kannana S, Mary S, Slochanal R, et al. Application of particle swarm optimization technique and its variants to generation expansion planning problem. Electric Power Systems Research, 2004, 70(8) : 2(13-210.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部