摘要
综合了传感器技术、单片机等各项技术.基于对驾驶员生命体征的分析,对不同精神状态时驾驶员的特异性生理指标进行分析比较,建立了驾驶员生理信息库.利用模糊聚类的方法及驾驶员生理信息采集正交实验,并综合直观分析法分析了不同实验因素对被测试精神状态的影响,建立驾驶操作和驾驶员生理指标之间的关系模型.然后找出驾驶操作行为和驾驶状态之间的关系,综合驾驶员各项生理指标,通过单片机技术及硬件设备实现对汽车司机疲劳的监控——判别驾驶员的不同精神状态:正常、临界或疲劳.实验结果显示:该方法对驾驶员体能状态能准确定位,同时能够满足实时性要求.
In this paper combines sensor technology and other single-chip technology. Based on the pilot vital signs analysis of the different state of mind, this paper analyzes and compares driver's specific physiological indicators to establish a driver physiological information base. Fuzzy clustering approach, driver's physiological information collection orthogonal experiment and intuitively comprehensive analysis of different factors on the experiment are used to analyze the impact of various factors on mental state of subjects so as to establish relationship model of driving operation and driver's physiological indicators. And then the relationship between the driver's integrated physiological indicators operation and driving state is found out. Integrating various physiological indications of drivers, driver's fatigue is monitored with single-chip technology and its hardware devices to identify the different psychosis states of drivers: normal, critical or fatigue. The results show that the method is capable of the physical state of the driver to get a better position, and at the same time, meets real- time requirements.
出处
《重庆工学院学报(自然科学版)》
2009年第4期25-29,共5页
Journal of Chongqing Institute of Technology
基金
重庆市科委应用基金资助项目(CSTC,2007BB2399)
关键词
PERCLOS
生理信息库
关系模型
模糊识别
模糊聚类分析
PERCLOS
physiological information base
relationship model
fuzzy identification
fuzzy clustering analysis