期刊文献+

重尾分布下的期望收益风险度量方法

Risk Measure Method Expect Return under Heavy-Tail Distribution
下载PDF
导出
摘要 采用一种基于投资者期望收益的风险度量方法,并给出该风险度量在Laplace分布、混合正态分布、T分布等具有重尾特征分布下的表达式及若干性质.由于这些分布能更好地拟合金融收益时间序列数据,故给出这种风险度量在重尾分布下的性质无疑具有一定的理论和现实意义. Traditional risk measures based on variance and VaR do not consider the target return of investors, this is not consistent to decision-making behavior of investors who trade off the investment return and risk when they invest. This paper adopted a risk measure based on the target return of investor. The expressions and properties of the risk measure on Laplace distribution, mixed normal distribution and T distribution were given. Because those distributions can depict the heavy-tail properties distribution of finance data more accurately, it certainly has some theoretic and practical significance.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2009年第4期521-525,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(70471025)
关键词 期望收益 风险度量 重尾分布 投资选择 target return; risk measure heavy-tail distribution; invest choice
  • 相关文献

参考文献10

  • 1胡德焜,董钢,须佶成.相对风险价值——一种新的一致风险度量[J].北京大学学报(自然科学版),2006,42(5):598-603. 被引量:4
  • 2戴浩晖,陆允生,王化群.单时期下一种新的风险度量方法及其应用[J].华东师范大学学报(自然科学版),2001(3):33-38. 被引量:1
  • 3Li Ping,Li Chuling, Wan Janping. The comparison and selection of investment projects: A new standardized risk measure [J]. The Engineering Economist, 2003, 48(2) :127-151.
  • 4Husiman R, Koedijk K, Kool C, et al. Notes and communications: The tail-fatness of FX returns reconsidered [J]. Economist, 2002,50(2) : 300-312.
  • 5Bookstaber R M, Mcdonald J B. A general distribution for describing security price return [J]. The Journal of Business,198? ,60(3) : 401-420.
  • 6Linden M. A model for stock return distribution [J]. International Jurnal of Finance & Economics, 2001, 6(2) :159-169.
  • 7Rachev S T, Sengupta A. Laplace-Weibull mixtures for modeling price changes [J]. Management Science, 1993, 39(8) :1029-1038.
  • 8Kon S J. Model of Stock return-a comparison [J]. Journal of Finance, 1984, 39 ( 1 ):147-156.
  • 9Gillemot L,Toyli J,Kertesz T, et al. Time-independent model of asset returns revisited [J]. Physica A: Statistical Mechsnicflanflits Application, 2000,282 (2) : 304-324.
  • 10Ahmed S, Ulas Cakmak, Alexander Shapiro. Coherent risk measures in inventory problems [J]. European Journal of Optional Research, 2007,182 (2): 226-238.

二级参考文献17

  • 1罗伯勋,卢本捷.投资者风险厌恶的变量[J].系统工程,1997,15(1):37-42. 被引量:2
  • 2欧阳光中 李敬湘.证券组合与投资分析[M].北京:高等教育出版社,1996.11-28.
  • 3费为银,安徽师范大学学报,1998年,21卷,3期,212页
  • 4欧阳光中,证券组合与投资分析,1996年,11页
  • 5TASCHE D. Expected shortfall and beyond[ J l. Journal of Banking and Finance, 2002, 26: 1519-1533.
  • 6ARTZNER P, DELBAEN F, et al. Coherent measure of risk[ J ]. Mathematical Finance, 1999,9 (3) : 203-228.
  • 7DELBAEN F. Coherent risk measures on general probability spaces[ C]. Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann. New York: Springer-Verlag,2002 : 1-38.
  • 8ROCKAFELLAR R T, URYASEV S. Optimization of conditional value-at-risk [ J ]. The Journal of risk, 2000,2(3) :21-41.
  • 9ROCKAFELLAR R T, URYASEV S. Conditional value-atrisk for general loss distributions[J] . Journal of Banking and Finance, 2002,26 : 1443-1471.
  • 10ACERBI C, TASCHE D. On the coherence of expected shortfall [ J ] . Journal of Banking and Finance, 2002,26 :1487-1503.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部