期刊文献+

基于SCHMM的手语识别方法的实验研究

Experimental Research on SCHMM for Sign Language Recognition
下载PDF
导出
摘要 在近些年的手语识别工作中,HMM起到了重要的作用。提出将SCHMM用于手语识别,实验结果表明SCHMM优于离散隐马尔科夫模型(DHMM)和连续隐马尔科夫模型(CHMM),可以避开DHMM中因矢量量化造成的信息损失,在保证识别率的前提下降低模型的复杂性和运算量。 In recent years' works on sign language recognition, HMMs has played an important role. The statistical frame based on the HMM is the mainstream method in dynamic recognition domain recently; also is this article's basic theory. Presents a Semi-Continuous Hidden Markov Model for sign language recognition. Experiments show that SCHMM is prior to the DHMM and the CHMM. SCHMM avoids the information loss because of the vector estimate in DHMM, debases the complexity and the operations at the same recognition rate.
作者 柯珂 张岱
出处 《现代计算机》 2009年第4期22-24,共3页 Modern Computer
关键词 手语识别 隐马尔科夫模型(HMM) 半连续隐马尔科夫模型(SCHMM) Sign Language Recognition Hidden Markov Model(HMM) Semi-Continuous Hidden Markov ModeI(SCHMM)
  • 相关文献

参考文献4

  • 1Marten A, NICO K,Harri C.Assumptions for Long-Term Stochastic Population Forecasts in 18 European Countries[J]. European Journal of Population,2007,23:33-69
  • 2L.E. Baum. Petrie. Statistical Inference for Probabilistic Function of Finite State Markov Chains[J]. Annals of Math. Statistic, 1996, 6:1554-1563
  • 3L.E. Baum, J. A. Geon. An Inequality with Applications to Statistical Estimation for Probabilistic Functions of a Markov Process and to a Model for Ecology[J]. Bull.Amer.Meteorology, 1967, (2):360-363
  • 4L. Rabiner. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition [J]. Proc.IEEE, 1989, (2)1:257-286

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部