期刊文献+

改进的空间约束加权模糊核聚类红外图像分割 被引量:2

Improved Weighed KFCM Based on Spatially Constrained for Infrared Image Segmentation
下载PDF
导出
摘要 红外图像分割算法对复杂背景下的目标检测跟踪具有重要意义,提出了一种改进的基于空间约束的加权模糊核聚类红外图像分割新算法.在其中引入了红外图像像素间的空间位置约束关系和关于类别的结构信息,并定义了类别权重可靠性指数修正类别权重,不但抑制了红外图像中存在的噪声点和野值等干扰,而且可以保护红外图像中的小目标,防止被背景淹没.通过对实际红外图像的分割结果表明,该算法很大程度上减少了背景像素对目标识别的干扰,适于进行复杂背景下红外目标的准确分割. The method of infrared image segmentation is important for detection and tracking in complex background.An improved method for infrared image segmentation based on weighted fuzzy kernel clustering using spatial relation was proposed.The pixel's spatial positions restriction and the structure information about class were introduced.And a reliability of class weight was defined to revise the label weight factor.The noise of infrared and wild value was suppressed.Simultaneously the small targets were protected,in order to prevent submerging by background pixel.Through the experimental on real infrared image showing the obstruction to targets recognition by background pixel was decreased largely by the proposed method.It is be fit for infrared targets segmentation accuratly in complex background.
作者 宋长新
出处 《微电子学与计算机》 CSCD 北大核心 2009年第5期60-63,共4页 Microelectronics & Computer
关键词 红外图像分割 加权模糊核聚类 空间约束 类别权重可靠性指数 infrared image segmentation weighted fuzzy kernel clustering spatial constrained reliability of class weight
  • 相关文献

参考文献7

  • 1Wu Jin, Li Juan, Liu Jian, et al. Infrared image segmentation via fast fuzzy C - means with spatial information [ C]//International Conference on Robotics and Biomimetics. China: Shenyang, 2004:742 - 745.
  • 2Chen Songcan, Zhang Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel- induced distance measure[J]. IEEE Transactions on systems, man, and cybernetics, 2004, 34 (4):1907- 1916.
  • 3薛耿剑,王毅,赵海涛,魏梦琦,郝重阳.一种改进的模糊核聚类算法[J].中国医学影像技术,2005,21(10):1609-1611. 被引量:12
  • 4Liang Liao, Tu Sheng- lin. A fast spatial constrained fuzzy kernel clustering algorithm for MRI brain image segmention[C]//International Conference on Wavelet Analysis and Pattern Recognilion. China: Beijing, 2007:82 - 87.
  • 5Chen Song - can, Zhang Dao - qiang. Robust image segmentation using FCM with spatial constraints based on new kernel induced distance measure [J ]. IEEE Trans. systems, man and cybernetics, 2004, 34(4): 1907- 1916.
  • 6余锦华,汪源源,施心陵.基于空间邻域信息的二维模糊聚类图像分割[J].光电工程,2007,34(4):114-119. 被引量:20
  • 7高新波,李洁,姬红兵.基于加权模糊c均值聚类与统计检验指导的多阈值图像自动分割算法[J].电子学报,2004,32(4):661-664. 被引量:49

二级参考文献25

  • 1谈新权,金顺哲,陈筱倩.消除图像脉冲噪声的模糊结合滤波器[J].光电工程,2004,31(8):61-64. 被引量:6
  • 2杜峰,施文康,邓勇,朱振幅.红外序列图像的支持向量机分割方法[J].光电工程,2005,32(3):62-65. 被引量:9
  • 3刘健庄,谢维信,高新波.多阈值图像分割的遗传算法方法[J].模式识别与人工智能,1995,8(A01):126-132. 被引量:8
  • 4Axel Drehera, Peter Nunnenkampb, Rainer Thielec, 2010, "Are 'new'donors different? Comparing the allocation of bilateral aid between non-DAC and DAC donor countries", Kiel Working Paper 1601.
  • 5Dane Rowlands, "Emerging donors in international development assistance: a synthesis report", International Development Research Centre, Canada, January 2008.
  • 6Kimberly Smith, Talita Yamashiro Fordelone and Felix Zimmermann, 2010, "Beyond the DAC: the welcome role of other providers of development co-operation", OECD Development Co-operation Directorate.
  • 7Ngaire Woods, 2008, "Whose aid? Whose influence? China, emerging donors and the silent revolution in devel- opment assistance", International Affairs 84(6): 1205-1221.
  • 8Yu J, Huang HK. A new weighting fuzzy C-means algorithm[C].The 12th IEEE International Conference on Fuzzy Systems, 2003,2: 896-901.
  • 9Dave RN. Generalized fuzzy C-shell clustering and detection of circular and elliptical boundaries [J]. Pattern Recognition, 1992, 25(7) :639-641.
  • 10Krishnapuram R, Frigui H, Nasraui O. The fuzzy C quadrie shell clustering algorithm and the detection of second-degree[J]. Pattern Recognition Letters, 1993,14(7): 545-552.

共引文献76

同被引文献24

  • 1Weiling Cai, Songcan Chen, Daoqiang Zhang. Fast and robust fuzzy C- means clustering algorithms incorporating local information for image segmentation[J]. Pattern Recognition, 2007, 40(3) :825 - 838.
  • 2Songcan Chen, Daoqiang Zhang. Robust image segmentation using FCM with spatial constraints based on new kernd - induced distance metric [J]. IEEE Trans. on System, Man and Cybernetics- Part B, 2004, 34(4): 1907- 1916.
  • 3Domeniconi C, Al- Razgan M. Weighted cluster ensembles: methods and analysis[J ]. ACM Transactions on Knowledge Discovery from Data, 2009, 2(4) : 17 - 56.
  • 4Daoqiang Zhang, Songcan Chen, Zhi - Hua Zhou. Learning the kernel parameters in kernel minimum distance classifier[J ]. Pattern Recognition, 2006,39(1) : 133 - 135.
  • 5Yan B, Domeniconi C. Kernel optimization using pairwise constraints for semi- supervised clustering[ R]. Technical Report ISE - TR- 06 - 09, 2006.
  • 6Yan B, Domeniconi C. An adaptive kernel method for semi- supervised clustering [ C] // Proceedings of the 17th European Conference on Machine Learning. Germany: Berlin, 2006(4212) :521 - 532.
  • 7Wu K - P, Wang G- D. Choking the kernel parameters for support vector machines by the inter - cluster distance in the feature space [J ]. Pattern Recognition, 2009, 42 (5):710-717.
  • 8Wu Jin,Li Juan,Liu Jian,et al. Infrared image segmenta-tion via fast fuzzy C-Means with spatial Information [ C].International Conference on Robotics and Biomimetics,2004;742-745.
  • 9Jianchao Fan, Min Han, Jun Wang. Single point iterativeweighted fuzzy C-means clustering algorithm for remotesensing image segmentation [ J]. Pattern Recognition,2009,42(11) ;2527 -2540.
  • 10Yang J, Yu K,Gong Y,et al. Linear spatiai pyramid matc-hing using sparse coding for image classification [ C].CVPR,2009:1794-1801.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部