期刊文献+

无线传感器网络中基于MDP的MAS协作策略的优化及分布执行 被引量:1

Optimization and Distributed Execution of MAS Cooperative Strategy Based on MDP in Wireless Sensor Networks
下载PDF
导出
摘要 为降低马尔可夫决策模型生成MAS协作策略的复杂度,减少协作通信量,在无线传感器网络中利用agent状态之间存在的条件独立性与上下文独立性关系提出了一种新的优化方法。方法通过分解并优化SPI算法生成的策略树,使得MAS中处于独立状态的agent可以分布独立运行,只有在需要同其他agent协商时才进行通信。并在协作中采用Q分解机制实现共享资源的分配,减少资源使用冲突,获取更大奖励。使用STATLOGO软件对方法进行验证,实验结果表明该方法在MAS完成协作任务获取目标奖励的同时,具有产生通信量较小的优点。 In order to reduce the complexity created by MDP model and the cooperation traffic, the method of creating strategy tree by the model is improved. Using the context-specific and conditional independence existing among the agent states in wireless sensor networks, the tree created by SPI algorithm is decomposed and optimized. This makes the independent agents in MAS running independently, and only communicating with each other when cooperation is needed. During operation Q-decomposition approach is proposed for resource allocating. Simulation experiment was developed by STARLOGO. Simulation indicates that MAS applying the strategy not only accomplishes the task and gains the reward, but effectively reduces traffic simultaneously.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第4期520-525,共6页 Chinese Journal of Sensors and Actuators
基金 国防基础科研项目资助(C2720061361)
关键词 多智能体系统 马尔可夫决策过程 无线传感器网络 上下文独立 条件独立 Q分解 MAS MDP wireless sensor network context-specific independence conditional independence Q-decomposition
  • 相关文献

参考文献12

  • 1Qi H, Xu Y. Mobile Agent Based Collaborative Signal and Information Processing in Sensor Networks. Proceeding of IEEE , 2003,91 (8) : 1172-1183.
  • 2IL YAS M, MAHGOUB I. Handbook of Sensor Networks: Compact Wireless and Wired Sensing Systems [M]. USA : CRC Press ,2005.
  • 3Bernstein D S, Givan R, Immerman N, and Zilberstein S. The Complexity of Centralized Control of Markov Decision Processes[J]. Mathematics of Operations Research, 2002.
  • 4Goldman C V, Zilberstein S. Decentralized Control of Cooperative Systems: Categorization and Complexity Analysis [J]. Journal of Al Research, 2004.
  • 5Maayan Roth, Reid Simmons and Manuela Veloso, Exploiting Factored Representations for Decentralized[J]. AAMAS07, 2007 : 469- 475.
  • 6Boutilier C, Dearden R, and Goldszmidt M. Stochastic Dynamic Programming with Factored Representations[J]. Artificial Intelligence, 2000.
  • 7Pierrick Plamondon, Brahim Chaib-draa and Abder Rezak Benaskeur. A Q-Decomposition and Bounded RTDP Approach to Resource Allocation[J]. AAMAS07, 2007 : 1212-1219.
  • 8Stuart Russell, Andrew L. Zimdars. Q-Decomposition for Reinforcementlearning Agents[J]. Proceedings of the Twentieth International Conference on Machine Learning. 2003.
  • 9王飞,刘大有,卢奕男,薛万欣.Bayesian网中的独立关系[J].计算机科学,2001,28(12):33-36. 被引量:2
  • 10陈志,王汝传,孙力娟.一种无线传感器网络的多Agent系统模型[J].电子学报,2007,35(2):240-243. 被引量:14

二级参考文献26

  • 1[1]Kumar S,Zhao F,shepherd D.Collaborative Ssignal and Information Processing in Microsensor Networks[J].IEEE Signal Processing Magazine,2002,9(2):13-14.
  • 2[2]Zhao F,Zhin J,Reich J.Information-Driven Dynamic Sensor Collaboration for Tracking Applications[J].IEEE Signal Processing Magazine,2002,I9(2):61-72.
  • 3[3]Guibas L J.Sensing,tracking,and Reasoning with Relations[J].IEEE Signal Processing Magazine,2002,19(2):73-85.
  • 4[4]Qi H,Xu Y.Mobile-Agent-Based Collaborative Signal and Information Processing in Sensor Networks[J].Proc.IEEE,2003,91(8):1172-1183.
  • 5Zhang N,Tech Report HKUSTCS98-09,1998年
  • 6Zhang T,Proc of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,1996年
  • 7Zhang N,Journal of Artificial Intelligence Research,1996年,5卷,301页
  • 8Zhang N,Proc of the Tenth Canadian Conf on Artificial Intelligence,1994年,171页
  • 9Zhang N,UAI'98
  • 10Bagnell J, Kakade S, Schneider J, et al. Policy Search by Dynamic Programming [M]. Neural Information Processing Systems, Cambridge: MIT Press, 2003.

共引文献17

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部