期刊文献+

组移动模型中一种基于种群特性的传感器网络分簇方法 被引量:2

A Flock-Based Clustering Algorithm in WSNs with Group Mobile Model
下载PDF
导出
摘要 为了增强传感器网络在组移动模型下的簇结构稳定性,提出了一种基于生物种群特性的分簇算法——FBCA算法。算法利用移动代理向信息素高的节点迁移实现簇头的轮换,并将节点与簇头之间的链路稳定性作为节点选择所加入簇的衡量指标,有效地利用了组移动模型下节点的移动特征来优化簇结构的稳定性。仿真表明,在组移动模型中,采用FBCA算法的传感器网络有着较好的簇结构稳定性和能量效率及较均匀的簇头分布性。 To promote cluster's stability in wireless sensor networks (WSNs) under the circumstance of nodes moving in group, we propose a flock-based clustering algorithm (FBCA). The algorithm change cluster-head by moving mobile agent to neighborhood with the highest pheromone, and use link stability between node and cluster-head as standard to join which cluster, making use of mobile character to optimize stability of cluster in an effective way. The simulation result prove the good performance of FBCA in mobile group model.
出处 《传感技术学报》 CAS CSCD 北大核心 2009年第4期543-547,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助(60871098) 重庆市自然科学基金资助
关键词 传感器网络 分簇 种群 组移动模型 WSNs clustering flock mobile group model
  • 相关文献

参考文献12

  • 1徐鸿 王考杰 甄曙辉.无线传感器网络技术在军事后勤中的应用前景.后勤科技装备,2008,2:10-13.
  • 2胡海江,张凤登.一种新的无线传感器网络分簇模型[J].传感技术学报,2006,19(2):477-480. 被引量:17
  • 3Xu K, Gerla M. A Heterogeneous Routing Protocol Based on a New Stable Clustering Seheme [C]// Proceeding of IEEE Military Communications Conference (MILCOM 2002), Anaheim, CA, October 2002.
  • 4臧婉瑜,于勐,谢立.一种基于稳定簇的混合路由协议CBHRP[J].计算机学报,2001,24(12):1262-1271. 被引量:6
  • 5Chatterjee M, Das S K, Turgut D. WCA: A Weighted Clustering Algorithm for Mobile Ad Hoe Networks[J]. Journal of Clustering Computing, 2006,5 (2) : 193-204.
  • 6Marco Dorigo, Luca Maria Gambardella Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transaction on Evolutionary computation, 1997,1 (4) : 123-126.
  • 7DORIGO M, et al. Ant Colony System: a Cooperative Learning Approach to the Traveling Salesman Problem[J. IEEE Trans on Evolutionary Computation, 1998,1(1): 53-65.
  • 8曹浪财,罗键,李天成.智能蚂蚁算法——蚁群算法的改进[J].计算机应用研究,2003,20(10):62-64. 被引量:29
  • 9蒋加伏,陈荣元,唐贤瑛,谭旭.基于免疫——蚂蚁算法的多约束QoS路由选择[J].通信学报,2004,25(8):89-95. 被引量:12
  • 10Kadrovarch B A, Lamont G B, A Particle Swarm Model for Swarm-Based Networked Sensor Systems[C]//ACM Symposium on Applied Computing, March 2002:918-924.

二级参考文献36

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2CaySHorstmann et al.Java2 核心技术(卷二):高级特性[M].Prentice Hall.北京:机械工业出版社,2000..
  • 3FENG X, LI J Z, WANG J V, et al. QoS routing based on genetic algorithm[J].Computer Communications,1999,22 (15- 16):1392-1399.
  • 4CHOTPAT P, GOUTAM C, NORIO S. Neural network approach to multicast routing in real- time communication networks[A]. Proc International Conference on Network Protocols[C]. 1995.332-339.
  • 5HOPFIELD J J, TANK D W. Neural computation of decisions in optimization problems[J].Biological Cybernetics, 1985,54 (3): 141-152.
  • 6ZHANG S, LIU Z. A QoS routing algorithm based on ant algorithm[J]. IEEE ICC, 2001, 1(5): 1581-1585.
  • 7SCHOONDERWOERD R, HOLLAND O, BRUTEN J, ROTHKRANTZ L. Ant-based load balancing in telecommunications networks [J].Adaptive Behavior, 1996,5(2): 169-207.
  • 8DORIGO M, et al. Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evplufionary Computation, 1997,1(1):53-66.
  • 9DICARO G, DORIGO M. Ant-net: distributed stigmergetic control for communications networks[J]. Journal of Artificial Intelligence Research, 1998, 9(2):317-365.
  • 10JERNE N K. Towards a network theory of the immune system[A]. Ann Immumol (Inst Pasteur)[C].1974. 373-389.

共引文献60

同被引文献11

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部