期刊文献+

基于快速成型技术的可控结构多孔硅酸钙支架的制备及体外研究 被引量:2

Fabrication and in vitro evaluation of a novel calcium silicate scaffold with controlled architecture by rapid prototyping
原文传递
导出
摘要 目的利用快速成型技术制备可控结构多孔硅酸钙(rapid prototyping—calcium silicate,RP—CS)支架,并评价其特性和体外生物学表现。方法利用间接快速成型技术,结合固态自由成型和凝胶铸模的优点,制备可控结构RP—CS支架。与采用同法制备的多孔磷酸钙(RP—tricalcium phosphate,RP-TCP)支架相对照,将其置入体外模拟体液(simulated bodyfluid,SBF)、体外骨髓细胞共培养进行研究。结果所制备RP—CS支架具有相互连通的孔道结构,平均孔隙率为71%,平均轴向压缩强度为28MPa,平均孔道直径为(555.82±29.77)μm。体外SBF浸置试验发现RP—CS支架上有羟基磷灰石的沉积,说明此支架具有体外生物活性。体外细胞共培养试验表明,兔骨髓细胞可以在此支架表面贴附并分化。MTT表明共培养7d、14d,细胞增殖RP—CS组均明显高于RP—TCP组(P〈0.05)。共培养7d时,碱性磷酸酶活性RP—CS组明显高于RP-TCP组(P〈0.05),提示CS可能具有促进骨髓细胞向成骨细胞分化的能力。结论利用快速成型技术制备的可控结构RP—CS具有良好的生物相容性,在骨组织工程领域具有广泛应用前景。 Objective To fabricate porous calcium silicate(CS) scaffolds with controlled architecture by rapid prototyping and to evaluate the characterization of scaffolds and cell proliferation and differen- tiation on the prepared scaffolds. Methods The porous calcium silicate scaffolds with controlled architecture was fabricated by indirect rapid prototyping (RP-CS) which has the combined advantages of indirect solid freeform fabrication and gel-casting. Compared with the porous tricalcium phosphate scaffolds fabricated with the same method (RP-TCP), the obtained RP-CS scaffolds were investigated by simulated body fluid (SBF) immersing test and in vitro incubation with bone marrow cells. Results An average compressive strength of 28 MPa for the RP-CS scaffold with the average total porosity of 71% was achieved. The scaffolds with mean channel diameter of about (555.82±29.77)μm have interconnected maeroporous architecture. The SBF test showed that hydroxyapatite could be found on the surface of RP-CS scaffold indicating its in vitro bioaetivity. The in vitro study showed that the rabbit bone marrow cells attached and proliferated on the surface of the RP-CS scaffolds. MTT tests demonstrated that the cell proliferation was significantly higher on RP-CS scaffolds than on RP-TCP scaffolds at 7 and 14 days (P〈0.05). Moreover, the alkaline phosphatase (ALP) activities of cells on RP-CS scaffolds were increased as compared to the control at 7 days (P〈0.05), indicating the capacity in promoting bone marrow cells differentiation into osteogenic ceils. Conclusion The obtained RP-CS scaffold in this study is biocompatible, and has promising future for bone tissue engineering.
出处 《中华骨科杂志》 CAS CSCD 北大核心 2009年第5期492-498,共7页 Chinese Journal of Orthopaedics
基金 基金项目:国家973计划资助项目(2005CB522704) 上海市科委资助项目(07ZR14127)
关键词 硅酸盐类 组织工程 骨髓细胞 体外研究 Silicates Tissue engineering Bone marrow cells In vitro
  • 相关文献

参考文献37

  • 1Lu JX, Flautre B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in rive. J Mater Sci Mater Med, 1999, 10:111-120.
  • 2Zeltinger J, Sherwood JK, Graham DA, et al. Effect of pore size and void fraction on cellular adhesion, proliferation and matrix deposition. Tissue Eng, 2001, 7: 557-572.
  • 3O'Brien FJ, Harley BA, Yannas IV, et al. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials, 2005, 26: 433 -441.
  • 4Miranda P, Saiz E Gryn K, et al. Sintering and roboeasting of beta- tricalcium phosphate scaffolds for orthopaedic applications. Acta Biomater, 2006, 2: 457-466.
  • 5Yang S, Leong KF, Du Z, et al. The design of scaffolds for use in tissue engineering. Part Ⅱ. Rapid prototyping techniques. Tissue Eng, 2002, 8: 1-11.
  • 6Li X, Li D, Wang L, et al. Osteoblast cell response to beta-tricalcium phosphate scaffolds with controlled architecture in flow perfusion culture system. J Mater Sci Mater Med, 2008, 19: 2691-2697.
  • 7许宋锋,王臻,李涤尘,陈中中,胡学峰,张涛,王林.组织工程化大段人工骨的成骨性能及修复机制[J].中华实验外科杂志,2005,22(6):735-737. 被引量:13
  • 8许宋锋,王臻,李涤尘,连芩,胡学峰,张涛,王林.基于快速成型的立体编织仿生大段人工骨的成骨研究[J].中华实验外科杂志,2006,23(11):1395-1397. 被引量:5
  • 9De Aza PN, Luklinska ZB, Anseau M, et al. Morphological studies of pseudowollastonite for biomedical application. J Mierosc, 1996, 182: 24-31.
  • 10De Aza PN, Guiti6n F, De Aza S. Bioeutectic: a new ceramic material for human bone replacement. Biomaterials, 1997, 18: 1285-1291.

二级参考文献11

共引文献15

同被引文献11

  • 1汪爱媛,彭江,孙明学,田杰谟,董利民,王鑫,卢世璧.快速成型骨组织工程支架的结构及力学仿生性能特征[J].中国组织工程研究与临床康复,2007,11(9):1636-1639. 被引量:6
  • 2Hollister SJ. Porous scaffold design for tissue engineering[J]. Nat Mater, 2005,4(7) :518-524.
  • 3Tan KN, Chua CK, Leong KF, et al. Selestive laser sintering of bioeompatible polymers for applications in tissue engineering [ J ]. Biomed Mater Eng, 2005,15 (1-2) : 113-124.
  • 4Manjubala I, Woesz A, Pilz C, et al. Biomimetic mineral-organic composite scaffolds with controlled internal architecture[J]. J Ma- ter Sci Mater Med, 2005,16 (12) : 1111-1119.
  • 5Khalyfa A, Vogt S, Weisser J, et al. Development of a new calci- um phosphate powder-binder system for the 3D printing of patient specific implants [ J ]. J Mater Sci Mater Med, 2007,18 (5) :909- 916.
  • 6Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engi- neering using polycaprolactone scaffolds fabricated via selective la- ser sintering [ J ]. Biomaterials, 2005,26 ( 23 ) :4817 -4827.
  • 7Ryan GE, Pandit AS, Apatsidis DP. Porous titanium scaffolds fabricated using a rapid prototyping "and powder metallurgy tech- nique [ J ]. Biomatefials. 2008.29 (27 ) :3625-3635.
  • 8LI X, Li DC, Lu BH, et al. Design and fabrication of CAP scaf- folds by indirect solid free form fabrication[ J]. Rapid Prototyping Journal, 2005,11 (5) :312-318.
  • 9Rumpler M, Woesz A, Varga F, et al. Three-dimensional growth behavior of osteoblasts on blomimetic hydroxylapatite scaffolds [J]. J Biomed Mater Res A, 2007,81A(1) :40-50.
  • 10Lee JY, Choi B, Wu B, et al. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineer- ing[ J]. Biofabrication, 2013,5 (4) :045003.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部