期刊文献+

GLP-1,Exendin-4和C肽对大鼠肾血流的影响

Effects of GLP-1, Exendin-4 and C-peptide on renal blood flow in rats
原文传递
导出
摘要 目的比较胰升糖素样肽1(GLP-1)、Exendin-4和c肽对血糖正常和高血糖大鼠肾血流(RBF)的影响。方法雄性成年Wistar大鼠随机分为GLP-1组、Exendin-4组、C肽组和对照组。每组再分为基础组和糖负荷组(每组6~7只大鼠)。采用微球技术测定大鼠RBF和肾上腺血流,同时测定平均动脉压和血糖。结果高血糖时RBF显著增加(P〈0.01)。GLP-1显著增加基础RBF[(7.540±0.909vs4.775±0.638)ml·min^-1·g^-1肾组织,P〈0.05],进一步增加糖负荷后RBF[(11.054±1.236vs8.952±1.142)ml·min^-1·g^-1肾组织,P〉0.05]。Exendin-4不影响基础和糖负荷后RBF,但阻断了高血糖诱导的RBF增加。C肽显著增加大鼠基础RBF(P〈0.05),对糖负荷后RBF无影响。结论GLP-1、Exendin-4和C肽均具有调节RBF的作用。Exendin-4阻断高糖诱导的RBF增加,改善高血糖时的肾脏血流动力学异常。 Objective To evaluate the effects of glucagon-like peptide-1 (GLP-1), Exendin-4 and C- peptide on renal blood flow(RBF) in normoglycaemic and hyperglycaemic rats. Methods Adult male Wistar rats were divided into 4 groups and intravenously given saline (or 30% glucose, as control), GLP-1, Exendin4 and C- peptide respectively. Mean arterial blood pressure was monitored and microsphere technique was adopted to measure RBF and adrenal blood flow. Results Glucose administration augmented RBF significantly ( P〈0.01 ). GLP-1 significantly increased basal RBF ( P〈0.05 ) , and further increased RBF after glucose administration ( P〉 0.05). Exendin-4 had rio effect on either basal RBF or post-glucose-load RBF, but prevented the glucose-induced increase of RBF. C-peptide enhanced basal RBF (P〈0. 01 ), but did not affect RBF after glucose injection. Conclusion GLP-1, Exendin-4 and C-peptide exert a regulatory effect on RBF in Wistar rats. Exendin-4 prevents the increment of RBF in hyperglycaemic rats and might be a promising agent against diabetic nephropathy.
出处 《中华内分泌代谢杂志》 CAS CSCD 北大核心 2009年第2期189-192,共4页 Chinese Journal of Endocrinology and Metabolism
关键词 C肽 胰升糖素样肽1 EXENDIN-4 微球技术 肾血流 C-peptide Glucagon-like peptide-1 Exendin-4 Microsphere technique Renal blood flow
  • 相关文献

参考文献21

  • 1Nakanishi K, Onuma S, Higa M, et al. The intrarenal blood flow distribution and role of nitric oxide in diabetic rats. Metabolism, 2005, 54:788-792.
  • 2Vinik AI, Vinik E. Prevention of the complications of diabetes. Am J Manag Care, 2003,9 :S63-S80.
  • 3Pelliccia P, Savino A, Cecamore C, et al. Early changes in renal hemodynamics in children with diabetes: Doppler sonographic findings. J Clin Ultrasound. 2008,36:335-340.
  • 4Hansen L, Hartmann B, Mineo H, et al. Glucagon-like peptide-1 secretion is influenced by perfusate glucose concentration and by a feedback mechanism involving somatostatin in isolated perfused porcine ileum. Regul Pept, 2004,118 : 11-18.
  • 5Nystrom T, Gonon AT, Sjoholm A, et al. Glucagon-like peptide-1 relaxes rat conduit arteries via an endothelium-independent mechanism. Regul Pept, 2005,125 : 173-177.
  • 6Wei Y, Mosjov S. Tissue-specific expression of the human receptor for glucagon-like peptide-l: Brain, heart and pancreatic forms have the same deduced amino acid sequences. FEBS Lett, 1995,358:219-224.
  • 7Cotter MA, Ekberg K, Wahren J, et ai. Effects of proinsulin c-peptide in experimental diabetic neuropathy : vascular actions and modulation by nitric oxide synthase inhibition. Diabetes, 2003,52 : 1812-1817.
  • 8Johansson M, Carlsson PO, Jansson L. Caerulein-indueed pancreatitis and islet blood flow in anesthetized rats. J Surg Res, 2003,113 : 13-20.
  • 9Nordquist L, Lai EY, Sjoquist M, et al. C-peptide constricts pancreatic islet arterioles in diabetic, but not normoglycaemic mice. Diabetes Metab Res Rev, 2008,24:165-168.
  • 10Jansson L, Hellerstrom C. Stimulation by glucose of the blood flow to the pancreatic islets of the rat. Diabetologia, 1983,25:45-50.

二级参考文献30

  • 1Camille AJ,Andrzej SK,John R,et al.Epidemic of end-stage renal disease in people with diabetes in the United States population:Do we know the cause? Kidney Int,2005,67(5):1684 -91.
  • 2Paul CW,Van D,Kitty J,et al.Renal replacement therapy for diabetic end-stage renal disease,Data from to registries in Europe (1991-2000).Kidney lnt,2005,67 (4):1489-99.
  • 3World Health Organization.Prevention of diabetes mellitus.Geneva,Switzerland,World Health Organization,1994.
  • 4Apodaca G.Modulation of membrane traffic by mechanical stimuli.Am J Physiol Renal Physiol,2002,282(2):F179 -90.
  • 5Mc Cormick SM,Frye SR,Eskin SG,et al.Microarray analysis of shear stressed endothelial cells.Biorheology,2003,40(1-3):5 -11.
  • 6Eskin SG,Turner NA,Mcintire LV.Endothelial cell cytochrome P450 1A1 and 1B1:up-regulation by shear stress.Endothelium,2004,11(1):1-10.
  • 7Cunningham KS,Gotlieb AI.The role of shear stress in the pathogenesis of atherosclerosis.Lab Invest,2005,85(1):9-23.
  • 8Foce T,Kuida K,Namachnk M,et al.Inhibitors of protein kinase signaling pathways emerging therapies for cardiovascular disease.Circulation,2004,109(10):1196-1205.
  • 9Ozawa N,Schichiri M,Iwashina M,et al.Laminar shear stress up -regulates inducible nitric oxide sythase in the endothelium.Hypertens Res,2004,27(2):93-99.
  • 10Guo P,Weinstein AM,Weinbaum S.A hydrodynamic mechanosensory hypothesis for brush border microvilli.Am.J.Physiol,2000,279:F698-F712.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部