期刊文献+

不同时间尺度下小波函数的离散化生成算法 被引量:1

Discrete Generating Algorithm of Wavelet Functionunder Various Time Scales
下载PDF
导出
摘要 从小波的正交多尺度分析、双尺度方程及构造定理出发,详细推导了不同时间尺度下紧支集的尺度函数及小波函数的离散化生成算法及其迭代实现方法,为小波在信号分析中的工程应用及科*学研究提供了必要的手段。 Abstract From the orthogonal multiresolution analysis, two-scale equation and construction* theorem, discrete generating algorithm and its iterated implementation for both compactly* supported scale function and wavelet function under various time scales are derived in detail and a necessary method for the application of wavelet analysis in engineering application and scientific research is provided.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1998年第2期57-60,共4页 Journal of Harbin Institute of Technology
  • 相关文献

参考文献4

  • 1林伟国,Proceedings of APSI97,1997年,291页
  • 2张培强,MATLAB语言.演算纸式的科学工程计算语言,1995年
  • 3秦前清,实用小波分析,1995年
  • 4冉启文,小波分析方法及其应用,1995年

同被引文献11

  • 1Kovvali N, Lin W, Carin L. Order of accuracy analysis for multiresolution time-domain using Daubechies bases [J]. Microwave and Optical Technology Letters, 2005,45(4) :290-293.
  • 2Diaz L A, Martin M T, Vampa V. Daubechies wavelet beam and plate finite elements[J]. Finite Elements in Analysis and Design, 2009,45 (3) : 200-209.
  • 3Khare A, Khare M, Jeong Y, et al. Despeckling of medical ultrasound images using Daubechies complex wavelet transform [J]. Signal Processing, 2010, 90 (2) : 428-439.
  • 4Wu Jianda, Liu Chiuhong. Investigation of engine fault diagnosis using discrete wavelet transform and neural network [J]. Expert Systems with Applications, 2008,35(3):1 200-1 213.
  • 5Saravanan N, Ramachandran K I. Fault diagnosis of spur bevel gear box using discrete wavelet features and decision tree classification[J]. Expert Systems with Applications, 2009,36 (5) : 9 564-9 573.
  • 6Rafiee J, Tse P W. Use of autocorrelation of wavelet coefficients for fault diagnosis [J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1 554-1 572.
  • 7Gketsis Z E, Zervakis M E, Stavrakakis G. Detection and classification of winding faults in windmill generators using wavelet transform and ANN [J]. Electric Power Systems Research, 2009, 79 (11): 1 483-1 494.
  • 8Mallat S. Multiresolution approximations and wavelet orthonomal bases of L^2 (R)[J]. Transactions of American Mathematical Society, 1989, 315 (1) : 68-87.
  • 9赵学智,叶邦彦.单种子和多种子对正态随机序列质量的影响[J].振动与冲击,2011,30(1):49-55. 被引量:2
  • 10赵学智,叶邦彦,陈统坚.无显式表达小波基的参数方程[J].振动工程学报,2004,17(1):16-19. 被引量:3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部