期刊文献+

RADA16-I纳米短肽水凝胶力学强度的调控 被引量:1

Control on Mechanical Strength of Nano-peptide RADA16-I Hydrogel
下载PDF
导出
摘要 研究了RADA16-I纳米短肽的二级结构和微观形态及其在不同溶液触发下形成的水凝胶的力学强度。试验结果表明,该短肽在水溶液中形成典型的β-sheet结构,这对其形成纳米纤维十分重要。此外,研究发现采用不同的溶液触发得到的水凝胶的力学强度可在一定范围内变化,符合DLVO理论。这可为组织工程提供强度可调控的纳米纤维支架材料。 In this study, secondary structure, micromorphology and rheology properties of peptide RADA16-I are investigated. The peptide forms a typical β-sheet structure, which is significant for nanofiber formation. Moreover, when triggered by different solution, the storage modulus of the hydrogels can vary within certain range and this property is in compliance with DLVO theory. This provides RADA16-I nanofiber scaffolds with controllable mechanical strength for tissue engineering, the major application of peptide materials.
出处 《材料导报》 EI CAS CSCD 北大核心 2009年第8期33-35,共3页 Materials Reports
基金 四川大学"985"自然科学基金(0083604127032)
关键词 自组装 短肽 水凝胶 纳米纤维 生物材料 self-assembly, peptide, hydrogel, nanofiber, biomaterial
  • 相关文献

参考文献13

  • 1Zhang S. Beyond the petri dish[J]. Nat Biotechn, 2004,22 (2):151.
  • 2Zhang S, Gelain F, Zhao X. Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell eultures[J]. Seminars in Cancer Biology, 2005,15(5) : 413.
  • 3Zhang S,Altman M. Peptide self-assembly in functional polymer science and engineering[J]. React Funct Polym, 1999, 41(1-3):91.
  • 4Zhang S. Fabrication of novel biomaterials through molecu- lar self-assembl[J]. Nature Biotechn, 2003,21 (10): 1171.
  • 5Hartgerink J D, Beniash E, Stupp S I. Self-assembly and mineralization of peptide-amphiphile nanofibers[J]. Science, 2001,294(5547) : 1684.
  • 6Aggeli A, Bell M, Boden N. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes[J]. Nature, 1997,386(6622) : 259.
  • 7Yokoi H, et al. Dynamic reassembly of peptide RADA16 nanofiber scaffold[J]. Pro Natl Acad Sci, 2005, 102(24): 8414.
  • 8Semino C E, Kasahara J, Hayashi Y, et al. Entrapment of migrating hippoeampal neural cells in three-dimensional peptide nanofiber scaffold[J]. Tissue Eng,2004,10(3-4):643.
  • 9Semino C E, Merok J R, Crane G G, et al. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaf- folds[J]. Differentiation, 2003,71(4-5) : 262.
  • 10Ye Z, Zhang H, Luo H,et al. Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-I[J]. J Pept Sci,2008,14(2):152.

同被引文献17

  • 1陈哲峰,范卫民,刘峰.利用PLA、PGA、PLGA三种支架再生兔关节软骨[J].江苏医药,2005,31(8):599-601. 被引量:10
  • 2Langer R, Vacanti JP.Tissue engineering [J]. Science, 1993,260(5110) : 920- 926.
  • 3Hauser CA,Zhang S.Designerself-assemblingpeptide nanofiber biological materials[J].Chem Soc Rev,2010, 39(8) : 2780-2790.
  • 4Gunn J,Zhang M.Polyblend nanofibers for biomedical applications:perspectives and challenges[J]. Trends Biotechnol, 2010,28 ( 4 ) : 189-197.
  • 5Richard-Blum S, Ruggiero F.The collagen superfamily: from the extraeellular matrix to the cell membrane [J].Pathol Biol (Paris) ,2005,53(7) :430- 442.
  • 6Pashley DH ,Tay FR ,Yiu C ,et al. Collagen degradation by host-derived enzymes during aging[J].] Dent Res ,2004,83(3) :216-221.
  • 7Varshosaz J.The promise of chitosan microspheres in drug delivery systems[J].Expert Opin Drug Deliv, 2007,4(3) : 263-273.
  • 8Malafaya PB, Santos TC, van Griensven M,et al.Morphology, meehanicaI characterization and in vivo neo-vaseularization of chitosan particle aggregated scaffolds architectures[J].Biomaterials, 2008,29(29) : 3914-3926.
  • 9Peppas NA, Langer R.New challenges in biomaterials [J]. Science, 1994, 263(5154) : 1715-1720.
  • 10Thevenot P, Nair A, Dey J,et al. Method to analyze three-dimensional cell distribution and infiltration in degradable scaffolds[J]. Tissue Eng Part C Methods, 2008,14(4) : 319-331.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部