期刊文献+

低Reynolds数下单排方柱绕流尾迹涡型的LBM模拟 被引量:3

LBM simulations of wake vortex patterns at low Reynolds numbers behind a row of square cylinders
原文传递
导出
摘要 针对工程中遇到的周期柱体绕流问题,采用格子Boltzmann方法(LBM)对低Reynolds数下单排周期排列方柱的定常绕流进行数值模拟,详细分析了柱体后面的尾迹涡型随着Reynolds数的变化情况,并通过对不同Reynolds数下尾迹涡型结构的分析,得到了二射流、三射流和四射流发生合并现象的临界Reynolds数,其中二射流出现合并的临界Reynolds数与文献的数值模拟结果一致,三射流和四射流出现合并的临界Reynolds数则偏大,但更接近实验结果。 The steady flow at low Reynolds numbers past a single row of square cylinders was studied numerically using the lattice Boltzmann method (LBM) to analyze flows typical of many engineering applications with periodic flows around cylinders. The vortex patterns in the wake agree well with experimental data in the literature with wakes given for several Reynolds numbers. The critical Reynolds numbers were obtained by analyzing the structure of the vortex pattern behind the cylinders to identify when two jets, three jets and four jets join together. The critical Reynolds number for two jets to join is consistent with results in the literature, while those for three and four jets are larger than numerical results in the literature, but closer to experimental reports.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期763-766,共4页 Journal of Tsinghua University(Science and Technology)
关键词 射流合并 方柱绕流 叉形分叉 格子BOLTZMANN方法 confluence of jets flow past square cylinder pitchfork bifurcation lattice Boltzmann method
  • 相关文献

参考文献1

二级参考文献12

  • 1Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329-364 (1998)
  • 2Rothman, D.H.: Cellular-automaton fluids: a model for flow in porous media. Geophysics 53(4), 509-518 (1988)
  • 3Guo, Z.L., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 036304 (2002)
  • 4Balasubramanian, K., Hayot, E, Saam, W.E: Darcy's law from lattice-gas hydrodynamics. Phys. Rev. A 36(2), 2248-2253 (1987)
  • 5Gao, Y., Sharma, M.M.: ALGA model for fluid flow in heterogeneous porous media. Transp. Porous Media 17, 1-17 (1994)
  • 6Dardis, O,, McCloskey, J.: Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Phys. Rev. E 57(4), 4834-4837 (1998)
  • 7Thorne, D.T., Sukop, M.C.: Lattice Boltzmann model for the Elder problem. In: Proceedings of the XVth International Conference on Computational Methods in Water Resources, June 13-17, 2004, Chapel Hill, NC, USA, pp. 1549-1557
  • 8Qian, Y.H., D'Humieres, D., Lallemand, E: Lattice BGK models for Navier-Stokes equations. Europhys. Lett. 17(6), 479-484 (1992)
  • 9He, X., Zou, Q., Luo, L.S., Dembo, M.: Analytic solutions of simple flows and analysis of non-slip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87, 115-136 (1997)
  • 10Sukop, M.C., Thorne, D.T.: Lattice Boltzmann Modeling, p. 149. Springer, Heidelberg (2006)

共引文献1

同被引文献34

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部