期刊文献+

属性掌握概率分类模型——一种基于Q矩阵的认知诊断模型 被引量:6

A MODEL OF COGNITIVELY DIAGNOSTIC BASE ON Q MATRIX:CLASSIFYING MODEL OF THE PROBABILITY OF ATTRIBUTES' MASTERY
下载PDF
导出
摘要 提出了一种属性掌握概率的分类模型,该模型基于Q矩阵,采用对属性掌握概率先估计后分类的方法,从而实现对考生知识状态的识别.在估计阶段提出一种属性掌握概率的估计方法,在分类阶段引进模糊数学的贴近度按择近原则判别法,并通过计算机模拟研究,发现该模型适用于总体的属性掌握概率服从左偏态分布和双峰分布的考生知识状态的识别. A classifying model for probability of attributes' mastery is proposed. This is a model of cognitive diagnosis based on Q matrix, which can be used to recognize student knowledge structure, whose mastery probabilities of the attributes obey negatively skewed distribution or bimodal distribution.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期117-122,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(30670718)
关键词 认知诊断 属性掌握概率分类模型 属性掌握概率估计 模糊识别 cognitive diagnosis a classifying model for probability of attributes' mastery estimate for probability of attributes' mastery fuzzy recognition
  • 相关文献

参考文献6

  • 1辛涛.当前考试理论研究的进展[J].心理发展与教育,2005,21(z1):63-69. 被引量:3
  • 2Tatsuoka K K. Rule space., an approach for dealing with misconceptions based on item response theory [J]. Journal of EducationalMeasurement, 1983, 20(4) : 345
  • 3DiBelo L, Stout W, Rousses L. Unified cognitive/ psychometric diagnostic assessment likelihood-based classification techniques [M]. Hilsdale N J: Lawrence Erlbaum Associates, 1995 : 361-389
  • 4Hartz S, Roussos L, Stout W. Skill diagnosis: theory and practice [M] .Princeton N J:Educational Testing Service, 2002
  • 5辛涛,焦丽亚.测量理论的新进展:规则空间模型[J].华东师范大学学报(教育科学版),2006,24(3):50-56. 被引量:21
  • 6IDimiter M D. Least squares distance method of cognitive validation and analysis for binary items using their item response theory parameters [J]. Applied Psychological Measurement, 2007, 31 (5): 367

二级参考文献49

  • 1戴海崎,张青华.规则空间模型在描述统计学习模式识别中的应用研究[J].心理科学,2004,27(4):949-951. 被引量:39
  • 2[1]TatsuokaKK. Tatsuoka M M. Rule space. In S. Kotz & N. L. Johnson (Eds.), Encyclopediaof statistical sciences. 1988,8, (pp. 217-220). New York: John Wiley & Sons.
  • 3[2]HambletonRK. Principles and selected applications of item response theory. In R. L. Linn (Ed.), Educational measurement, 1989(3rd ed., pp. 147-200). New York: Macmillan.
  • 4[2]Hambleton R K, Cook L L. Latent trait models and their use in the analysis of educational test data Journal of Educational Measurement, 1977, 14, 75-96.
  • 5[3]Hambleton R K, Swaminathan H. Item response theory:Principles and applications. Boston, MA: Kluwer-Nijhoff. 1985.
  • 6[4]Hambleton R K, Swaminathan H, Rogers H J. Fundamentals of item response theory. Newburry Park, CA: SAGE. 1991.
  • 7[5]Rost J. A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical andStatisticalPsychology, 1991,44, 75-92.Rudner L M, Getson P R, Knight D L. Biased item detection techniques. Journal of Educational Statistics, 1980,5,213-233.
  • 8[6]ReckaseM D. The past and future of multidimensional item response theory. Applied Psychological Measurement,1997,21, 25-36.
  • 9[7]Walker C M, Beretvas S N. Using multidimensional versusunidimensionalability estimates to determine student proficiency in mathematics. Paper presented at the meeting of the American Educational Research Association, New Orleans,LA. 2000.
  • 10[8]Ackerman T. Multidimensional item response theory and applications to practical testing problems. Unpublished manuscript. 1993.

共引文献22

同被引文献35

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部