摘要
给出了静止卫星在地球非球形引力、日月引力和光压作用下,以无奇点轨道根数为变量的摄动微分方程组.根据静止卫星轨道小倾角和小偏心率的特点进行了简化,用平均根数法求出摄动微分方程组的解.利用方程组的解计算各种摄动因素对静止卫星轨道根数的影响的量级估计,并用Runge-Kuta7(8)阶方法求出卫星运动微分方程组的数值解,通过解析解与数值解的比较。
The system of the perturbation differential equations of the geostationary satellite orbit′s parameter under the functions of the disturbations is given. The system is refined by the small inclination and small eccentricity characteristic of geostationary satellite′s orbit. The right function of the system is divided into secular term, long periodic term and short term. So the analytic solution of the system of equations can be obtained by integration. The orbital parameter variation is calculated by the analytic solution. The analytic solution is compared with the numerical solution. It shows that the analytic solution′s precision is 10-5.
出处
《陕西师大学报(自然科学版)》
CSCD
北大核心
1998年第2期20-24,共5页
Journal of Shaanxi Normal University(Natural Science Edition)
关键词
静止卫星
摄动力
微分方程组
解析解
轨道根
geostationary satellite
perturbation differetial equations system
analytic solution
numerical solution