期刊文献+

二维quasi-geostrophic方程的几何结构和非爆炸性(英文)

Geometric Structure and Non-blowup of 2D Quasi-geostrophic Equation
原文传递
导出
摘要 讨论了二维quasi-geostrophic方程在活动标量θ下的封闭水平集.在对上述水平集满足简单的几何条件并且⊥θ的大小沿着水平集与Ω(t)可比的情况下,证明了有限时间的非爆炸性. The dynamic evolution of a closed level set of the active scalar 0 in the 2D quasi-geostrophic(QG) equation is studied. Under some mild assumptions about the geometry of the level set and the magnitude of △⊥θ along the level set, the nonexistence of finite-time blowup for the 2D QG equation is obtained.
作者 靳鲲鹏
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期224-230,共7页 Journal of Fudan University:Natural Science
基金 Supported by National Nature Science Foundation of China(10601014)
关键词 二维quasi—geostrophic方程 非爆炸性 水平集 2D quaskgeostrophic non-blowup level set
  • 相关文献

参考文献9

  • 1Constantin P, Majda A, Tabak E. Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar[J]. Nonlinearity, 1994,7(6): 1495-1553.
  • 2Cordoba D. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation[J]. Annals of Mathematics, 1998,148: 1135-1152.
  • 3Cordoba D, Fefferman C. Growth of solutions for QG and 2D Euler equations[J]. Journal of AMS, 2002,15(3) : 665-670.
  • 4Constantin P, Nie Q, Schorghofer N. Nonsingular surface-quasi-geostrophic flow[J]. Phys Lett A, 1998,241(3) : 168-172.
  • 5Beale J T, Kato T, Majda A. Remarks on the breakdown of smooth solutions for the 3-D Euler equation [J]. Commun Math Phys, 1984,94: 61-66.
  • 6Deng J, Ji M. Geometric structure and non-blowup of 2D quasi-geostrophic equation[J]. Journal of Fudan University (Natural Science), 2008,47(2): 224-231.
  • 7Deng J, Hou T Y, Yu X, et al. Level set dynamics and the non-blowup of 2D quasi-geostrophic equation [J]. Methods of Analysis and its Applications, 2006,13(2) : 157-180.
  • 8Deng J, Hou T Y, Yu X. Geometric properties and non-blowup of 3D incompressible Euler flow[J]. Comm Partial Differential Equations, 2005,30: 225-243.
  • 9Deng J, Hou T Y, Yu X. Improved geometric conditions for non-blowup of the 3D incompressible Euler equation[J]. Comm Partial Differential Equations, 2006,31 : 293-306.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部