期刊文献+

时标上二阶脉冲动态方程的非局部边值问题 被引量:1

Nonlocal Boundary Value Problem for Second Order Impulsive Dynamic Equations on Time Scales
原文传递
导出
摘要 研究时标上二阶脉冲动态方程的非局部边值问题,利用两个算子和的不动点定理,得到了非局部边值问题至少存在一个解的充分条件,并且通过例子说明了定理的有效性. It deals with the study of nonlocal boundary value problem for the second order impulsive dynamic equations on time scales. Using fixed-point theorem for the sum of two operators, some suffcient conditions are obtained to guarantee the existence of at least one solution of the equations. Moreover, some examples are given to illustrate the effectiveness of the results.
作者 钟文勇 阮炯
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期245-252,259,共9页 Journal of Fudan University:Natural Science
关键词 时标 脉冲动态方程 非局部边值问题 不动点 time scales impulsive dynamic equations nonlocal boundary value problems fixed point
  • 相关文献

参考文献11

  • 1Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus[J]. Results Math, 1990, 18: 18-56.
  • 2Bohner M, Peterson A. Dynamic equations on time scales, an introduction with applications[M]. Boston: Birkhauser, 2001.
  • 3Sheng Q, Fadag M. An exploration of combined dynamic derivatives on time scales and their applications [J]. Nonlinear Analysis : Real World Applications, 2006, 7(3) : 395-413.
  • 4Atici F M, Biles D C, Lebedinsky A. An application of time scales to economics[J]. Math Compu Modelling, 2006, 43(7-8): 718-726.
  • 5Lakshmikantham V, Bainov D D, Simenov P S. Theory of impulsive differential equations[M]. Singpore: World Scientific, 1995.
  • 6Benchohra M, Ntouyas S K, Ouahab A. Existence results for second order boundary value problem of impulsive dynamic equations on time scales[J]. J Math Anal Appl, 2004, 296(1) : 65-73.
  • 7Geng Fengjie, Zhu Deming, Lu Qiuying. A new existence result for impulsive dynamic equations on time scales[J]. Appl Math Lett, 2007, 20(2) : 206-212.
  • 8Henderson J. Double solutions of impulsive dynamic boundary value problem on a time scale[J]. J Difference Equ Appl , 2002, 8: 571-585.
  • 9Chang Yongkui, Li Wantong. Existence results for impulsive dynamic equations on time scales with nonlocal initial conditions[J]. Math Comput Modelling, 2006, 43(3-4) : 377-384
  • 10O'Regan D. Fixed-point theory for the sum of two operators[J]. Appl Math Lett, 1995, 9(1): 1-8.

同被引文献5

  • 1HILGER S. Analysis on Measure Chain-A Unified Approach to Continuous and Discrete Calculus [J]. Journal of Re- sults Math. ,1990,18:18 - 56.
  • 2BOH NER M, PETERSON A. Dynamic Equations on Time Scales[ M]. Boston: Birkhauser, 2001.
  • 3SHENG Q,FADAG M. An Exploration of Combined Dynamic Derivatives on Time Scales and Their Applications [J]. Nonlinear Analysis : Real World Applications, 2006,7 (3): 395 - 413.
  • 4ATICI F M,BILES D C,LEBEDINSKY A. An Application of Time Scales to Economics [J]. Math. Compu. Model- ling,2006,43(7 - 8) : 718 - 726.
  • 5O'REGAN D. Fixed-Point Theory for the Sum of Two Operators [J]. Appl. Math. Lett. ,1995,9(1):1 -8.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部