期刊文献+

水合氧化钛制备Li_4Ti_5O_(12)及在电化学混合电容器中的应用 被引量:2

Preparation of Li_4Ti_5O_(12) with Hydration Titanium Dioxide for Electrochemical Hybrid Capacitor
下载PDF
导出
摘要 以水合氧化钛溶胶为起始反应物,在其中加入活性炭、柠檬酸和锂盐,干燥后在800℃热处理12h,制得具有尖晶石结构的新型准纳米晶Li4Ti5O12.电化学测试表明,该材料的首次嵌脱锂效率可达99.3%,85mA/g电流条件下的可逆嵌锂容量为152.3mAh/g,嵌脱锂平台稳定.将其制成嵌锂电极后与活性炭电极构成Li4Ti5O12/AC电化学混合电容器.充放电测试表明,在该混合电容器中,Li4Ti5O12电极在85mA/g电流条件的比电容量为96.4mAh/g,电容器充放电效率达96.5%. A novel pseudo-nanocrystalline Li4Ti5O12 spinel was prepared using hydration titanium dioxide as starting materials. Hydration titanium dioxide added with activated carbon, citric acid and lithium salt was heat-treated at 800℃ in air for 12h after desiccation. The spinel shows a good lithiation performance. Its reversible capacity is more than 152.3mAh/g at current density of 85mA/g, the first charge-discharge efficiency is 99.3 % and its charge-discharge potential is fiat and steady. Then, the LiaTi5 O12/AC hybrid capacitors using Li4Ti5O12 as the anode and activated carbon as the cathode is assembled. Electrochemical tests show that at current density of 85mA/g, the specific capacity of Li4Ti5O12 electrode is 96.4mAh/g and the efficiency of hybrid capacitor is 96.5%.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2009年第3期531-534,共4页 Journal of Inorganic Materials
基金 国家重点基础研究发展规划(2002CB211800) 国家高技术研究发展计划(2006AA11A165 2007AA11A104)
关键词 电化学混合电容器 水合氧化钛 LI4TI5O12 electrochemical hybrid capacitor hydration titanium dioxide Li4Ti5O12
  • 相关文献

参考文献10

二级参考文献37

共引文献42

同被引文献14

  • 1许江枫,李建玲,李文生,王新东.电极活性材料Li_4Ti_5O_(12)的制备及其主要影响因素[J].无机材料学报,2007,22(5):879-884. 被引量:13
  • 2高飞,李建玲,李文生,王琴,王新东.活性炭在不对称超级电容器中的电化学行为[J].电源技术,2007,31(9):701-705. 被引量:3
  • 3ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes [J]. Chem Soc Rev, 2009, 38(9): 2520-2531.
  • 4ANDO N, TAGUCHI M C M. Proceedings of 2010 international conferenceon advanced capacitors [M]. Japan: Kyoto Terrsa, 2010.
  • 5WANG Y, XIA Y. Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds: the C/Li Mn2O4 system [J]. J Electrochem Soc, 2006, 153: A450-A454.
  • 6WANG Y, LUO J, WANG C, et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds: II. comparison of Li Mn2O4, Li Co1/3Ni1/3 Mn1/3O2, and Li Co O2 positive electrodes [J]. J Electrochem Soc, 2006, 153: A1425-A1431.
  • 7WANG Y, LOU J, WU W. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds: III. capacity fading mechanism of Li Co1/3Ni1/3Mn1/3O2 at different PH electrolyte solutions [J]. J Electrochem Soc, 2007, 154: A228-A234.
  • 8RUCH P W, CERICOLA D, FOELSKE A, et al. A comparison of the aging of electrochemical double layer capacitors with acetonitrile and propylene carbonate-based electrolytes at elevated voltages [J]. Electrochim Acta, 2010, 55(7): 2352-2357.
  • 9WANG H, YOSHIO M. Graphite a suitable positive electrode material for high-energy electrochemical capacitors [J]. Electrochem Commun, 2006(8): 1481-1486.
  • 10RUCH P W, CERICOLA D, HAHN M. On the use of activated carbon as a quasi-reference electrode innon-aqueous electrolyte solutions [J]. J Electrochem Soc, 2009, 636: 128-131.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部