期刊文献+

有限多重集的运算及性质 被引量:2

Research of the Nature & Operation of Finite Multiset
下载PDF
导出
摘要 给出了多重集的定义,讨论了有限多重集的若干运算及其性质,得出有限多重集容斥原理仍然成立,而排中律不成立;有限多重集幂集的交、并、补运算构成软代数.建立了有限多重集比较完善的理论体系. The multiset is actually a natural prolongation of a common set. The definition of the multiset is proposed and a number of operations concerning the finite multiset and its nature are discussed in the paper. Through a systematic research of the finite multiset, the inclusion-exclusion principle still holds true but the law of excluded middle proves to be invalid. Operations like intersection, union and complement on the power set of the finite multiset constitute soft algebras. A systemic theory for the finite multiset is established, which has laid a solid foundation for the further study of the finite multiset and its application as well.
作者 牟廉明
出处 《内江师范学院学报》 2009年第4期5-8,共4页 Journal of Neijiang Normal University
基金 国家自然科学基金资助项目(10872085 10672151) 四川科技厅应用基础研究资助项目(07JY029-125)
关键词 多重集 重复度 有限多重集幂集 排中律 multiset multiplicity of multiset power set of the finite multiset law of excluded middle
  • 相关文献

同被引文献15

  • 1Wayne DB. Multiset theory [J]. Notre Dame Journal of Logic, 1989, 30(1):36-65.
  • 2Poplin P L. The Semiring of Multisets [D]. North Carolina State University, 2000.
  • 3Singh D, Singh J N. Some Combinatorics of Multisets [J]. International Journalof Mathematical Education in Science and Technology, 2003, 34(4):489-499.
  • 4Miyamoto S. Two Images and Two Cuts in Fuzzy Multisets [C]. In:Proceedings of the 8th International Fuzzy Systems Association World Congress (IFSA 99), 1999 : 1047-1051.
  • 5Krishinamwithy, E. V.. Rule-based Multiset Programming Paradigm: Applications to Synthetic Biology[R]. Computer Sciences Laboratory, Austrialian National University, Carberra, ACT 0200, Australia, 2005.
  • 6Knuth D E. The Art of Computer Programming:4[EB/OL]. [2008-06-08 ] http://www, cs. utsa. edu/ wagner/ knuth/.
  • 7Kawano S , Nakano S. Constant time generation of set partition [J]. IEICE Trans. Fundamentals, 2005, (4):930-934.
  • 8Bender E A, Devitt J S, Richmond L B. Partitions of multisets II [J]. Discrete Mathematics, 1984, 50: 1-8.
  • 9Donald E Knuth. The Art of Computer Programming, Volume 4, Fascicle 3 [M]. Addison-Wesley Professional, 2005.
  • 10Brent Yorgey, Conrad Parker. Generating Multiset Partitions [J]. The Monad Reader, 2007(8): 5-20.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部