期刊文献+

BS-Bézier算子的某些逼近性质研究 被引量:1

Some Properties of Approximation of BS-Bézier Operators
下载PDF
导出
摘要 利用经典的Bojanic-Cheng方法,结合分析技术,研究了BS-Bézier算子对一类绝对连续函数的逼近性质,得到比较精确的收敛阶估计。所得结论拓展了文[1]的研究结果。 Using Bojanic-Cheng's method and analysis techniques, the authors study the approximation properties of BS-Bézier Operators for some absolutely continuous functions. The result extends the work of Lian.
作者 连博勇 孙逊
机构地区 仰恩大学数学系
出处 《莆田学院学报》 2009年第2期17-19,共3页 Journal of putian University
基金 仰恩大学教育教学建设与改革研究课题项目(YEU2008-A048)
关键词 BS-Bézier算子 收敛阶 绝对连续函数 BS-Bézier operators convergence rate absolutely continuous functions
  • 相关文献

参考文献1

二级参考文献6

  • 1Chang G.Generalized Bernstein-Bézier polynomials[J].J.Comput.Math.,1983,1(4):322-327.
  • 2Li P,Gong Y H.The order of approximation by the generalized Bernstein-Bézier polynomials[J].J.of China Univ.of Science and Technology,1985,15(1):15-18.
  • 3Liu Z X.Approximation of continuous functions by the generalized Bernstein-Bézier polynomials[J].Approx.Theory.Appl.,1986,2(4):105-130.
  • 4Zeng X M,Piriou A.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions[J].J.Approx.Theory,1998,95:369-387.
  • 5Zeng X M.On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions II[J].J.Approx.Theory,2000,104:330-344.
  • 6Bojanic R,Cheng F.Rate of convergence of Bernstein polynomials for functions with derivatives of bounded variation[J].J.Math.Anal.Appl.,1989,141:136-151.

共引文献4

同被引文献6

  • 1连博勇,陈旭,曾晓明.关于Bernstein-Bézier算子对一类绝对连续函数的逼近[J].厦门大学学报(自然科学版),2006,45(6):749-751. 被引量:5
  • 2Zeng X M, Cheng F. First order absolute moment of Meyer-Ktinig and Zeller operators and their approximation for some absolutely continuous functions[J]. Math Slovaca, 2011, 61:635-644.
  • 3Zeng X M. On the rates of approximation of Bemstein type operators[J]. J Approx Theory, 2001, 109:242-256.
  • 4Zeng X M. Rates of approximation of bounded variation functions by two generalized Meyer-Krnig and Zeller type operators[J]. Comput Math Appl, 2000, 39:1-13.
  • 5Bojanic R, Cheng F. Rate of convergence of Bemstein polynomials for functions with derivatives of bounded variation[J]. J Math Anal Appl, 1989, 141 : 136-151.
  • 6蔡清波.Picard算子对绝对连续函数的逼近[J].泉州师范学院学报,2010,28(6):63-65. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部