期刊文献+

GF(p)上的平衡轮换对称函数

Balanced Rotation Symmetric Functions Over GF(p)
下载PDF
导出
摘要 给出GF(p)(p为素数)上n元轮换函数的轮换等价类的个数及n元平衡轮换对称函数的个数的一个下界. A lower bound on the number of balanced n-variable rotation symmetric functions over GF(p)is presented.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期5-9,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省青年人才项目(2006F3044) 福建省自然科学基金资助项目(2006J0189) 福建师范大学网络安全与密码技术重点实验室开放课题(07B002) 福建省教育厅基金资助项目(JA07050)
关键词 轮换对称函数 平衡 有限域 rotation symmetric function balanced finite field
  • 相关文献

参考文献11

  • 1Pieprzyk J, Qu C X. Rotation-symmetric functions and fash hashing[C]//Proceedings of the Third Australasion Conference on Information Security and Privacy, Lecture Notes in Computer Sci 1438, Berlin Heidelberg: Springer Verlag, 1998:196-180.
  • 2Courtois N, Meier W. Algebraic attacks on stream ciphers with linear feedback[C] //Advances in Cryptology-EUROCRYRT 2003, Lecture Notes in Computer Sei 2656, Berlin Heidelberg: Springer Verlag, 2003 : 345-359.
  • 3Dalai D K, Cupata K C, Maitra S. Notion of algebraic immunity and its evaluation related to fast algebraic attacks [C] //Second International Workshop, Boolean Function: Cryptography and Applications (BFCA 06), Berlin Heidelberg: Rouen France March, 2006: 13-15.
  • 4Dalai D K, Cupta K C, Maitra S. Results on algebraic immunity for cryptographically significant Boolean function[C]//Advances in Cryptology-INDORCRYPT 2004, Chennai, India, December 20-22, Lecture Notes in Computer Sci 3348, Berlin Heidelberg: Spring Verlag, 2004: 92-106.
  • 5Carlet C , Gaborit P. On the construction of balanced Boolean functions with a good algebraic immunity [C]//Proceedings of First Workshop on Boolean Functions : International Symposium on Volume, Issue, 4- 9, Berlin Heidelberg: Information Theory, 2005: 1101-1105.
  • 6Maximov A. Classes of plateaued rotation symmetric Boolean functions under transformation of walsh spectra [C] //WCC , Berlin Heidelberg: Norway Bergen, 2005: 325-334.
  • 7Sanica. P, Maitra S. Rotation symmetric Boolean functions-count and cryptographic properties[J].Discrete Applied Mathematics,2008, 156 (10):1567-1580.
  • 8Hu Y, Xiao G. Resilient functions over finite fields [J]. IEEE Trans on Infor Theorys, 2003, 49: 2040-2046.
  • 9Cusiek T W, Li Y, Stanica P. Balanced symmetric functions over GF(P) [J]. IEEE Trans on Infor Theory, 2008, 54(3):1304-1307.
  • 10Liu M L, Lu P Z, Mullen G L. Correlation-immunine functions over finite fields [J]. IEEE Trans Infor Theory, 1998, 44 (3):1273-1276.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部