期刊文献+

Fisher线性鉴别函数的一种推广形式 被引量:3

A Generalized Form of Fisher Linear Discriminant Function
原文传递
导出
摘要 鉴于常用的两种Fisher鉴别函数在应对奇异问题时存在的不足,给出一种Fisher鉴别函数推广形式,它能将双子空间鉴别分析中两个子空间的鉴别函数统一起来.本文还通过QR分解得到一个正交鉴别向量集,它与Fo-ley-Sammon正交鉴别向量集的鉴别性能很接近,但计算量较小.在2种人脸库上进行实验,实验结果与理论分析一致. A generalized form of Fisher discriminant function is presented. It overcomes the limitations of two common discriminant functions. The presented form uniforms the discriminant functions in two subspaces of the dual subspace discriminant analysis (DSDA). A new orthogonal discriminant vector set is obtained by QR decomposition, and its discriminant property is approximate to that of the Foley-Sammon orthogonal discriminant vector set with smaller computational complexity. The experiments on ORL and JAFFE database show that theory analysis is consistent to the experimental results.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第2期176-181,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60872084)
关键词 Fisher鉴别函数 双子空间鉴别分析(DSDA) 广义特征值分解(GEVD) 正交鉴别向量集 Fisher Discriminant Function, Dual Subspace Discriminant Analysis (DSDA), Generalized Eigenvalue Decomposition (GEVD), Orthogonal Discriminant Vector Set
  • 相关文献

参考文献13

  • 1Fisher R A. The Use of Multiple Measurements in Taxonomic Problems. Annual of Eugenics, 1936, 7 : 179 - 188
  • 2Duchene J, Leclercq S. An Optimal Transformation for Diseriminant and Principal Component Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1988, 10(6) : 978 -983
  • 3程云鹏.矩阵论.第2版.西安:西北工业大学出版社,2001
  • 4Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors. IEEE Trans on Computers, 1975, 24(3) : 281 -289
  • 5Liu Ke, Cheng Yongqing, Yang Jingyu, et al. An Efficient Algorithm for Foley-Sammon Optimal Set of Discriminant Vectors by Algebraic Method. International Journal of Pattern Recognition and Artificial Intelligence, 1992, 6{5) : 817 -829
  • 6Wang Xiangang, Tang Xiaoou. Dual-Space Linear Discriminant Analysis for Face Recognition// Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, Ⅱ: 564- 569
  • 7Yang Jian, Yang Jingyu. Why Can LDA Be Performed in PCA Transformed Space? Pattern Recognition, 2003, 36 ( 2 ) : 563 - 566
  • 8Yu Hua, Yang Jie. A Direct LDA Algorithm for High-Dimensional Data with Application to Face Recognition. Pattern Recognition, 2001, 34(10) : 2067 -2070
  • 9杨健,杨静宇,刘宁钟.统计不相关最优鉴别分析的理论与算法[J].南京理工大学学报,2002,26(2):179-182. 被引量:8
  • 10Lyons M J, Budynek J, Akamastu S. Automatic Classification of Single Facial Images. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999, 21 (12) : 1357 - 1362

二级参考文献6

共引文献18

同被引文献21

  • 1赵峰,张军英,梁军利.一种核Fisher判别分析的快速算法[J].电子与信息学报,2007,29(7):1731-1734. 被引量:7
  • 2Juwei Lu, Kostantinos N Plataniotis,Anastasios N Venetsanopoulos. Face recognition using LDA-based algorithms [ J ]. IEEE Trans on Neural Networks, 2003, 14 ( 1 ) : 117-126.
  • 3Amain Eftekhari, Mohamad Forouzanfar, Hamid Abrishami Moghaddm,et al. Block-wise 2D kernel PCA/LDA for face recognition [ J ]. Information Processing Letters, 2010, 110 (17) :761-766.
  • 4Wei-Shi Zheng,Laib J H,Stan Z Li. ID-LDA vs. 2D-LDA: When is vector-based linear discriminant analysis better than matrix-based? [ J ]. Pattern Recognition,2008,41(7) : 2156-2172.
  • 5Tatyana V Bandos, Lorenzo Bruzzone, Gustavo Camps-Vails. Classification of hyperspectral images with regtdarized linear diseriminant analysis [ J ]. IEEE Transactions on Geoscienee and Remote Seining,2009,47(3) :862-873.
  • 6Tang E K,Suganthan P N, Yao X,et al. Linear dimensionality reduction using relevance weighted LDA [ J ]. Pattern Recognition ,2005,38 ( 4 ) :485-493.
  • 7Marios Kyperountas, Anastasios Tefas, Ioannis Pitas. Weighted piecewise LDA for solving the small sample size problem in face verification [ J ]. IEEE Transactions on Neural Networks,2007,18 (2) :506-519.
  • 8Xue Jing-Hao,Titterington D Michael. Do unbalanced data have a negative effect on LDA? [ J ]. Pattern Recognition, 2008,41 (5) :1558-1571.
  • 9Belhumeur P N, Hespanha J P, Kricgman D J. Eigerffaces vs. fisherfaces: Recognition using class specific linear projection[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997,19 ( 7 ) : 711-720.
  • 10Yu H, Yang J. Direct LDA algorithm for high dimensional data with application to face recognition [ J ]. J. of Pattern Recognition, 2001,34 ( 10 ) :2067-2070.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部