期刊文献+

基于关联规则的特征选择算法 被引量:9

Feature Selection Algorithm Based on Association Rules
原文传递
导出
摘要 关联规则能够发现数据库中属性之间的关联,通过优先选择短规则用于相关属性的选择,有可能得到最小的属性子集.基于此,本文提出一种基于关联规则的特征选择算法,实验结果表明在属性子集大小和分类精度上优于多种特征选择方法.同时,对支持度和置信度对算法效果的影响进行探索,结果表明高的支持度和置信度并不导致高的分类精度和小的特征子集,而充足的规则数是基于关联规则特征选择算法高效的必要条件. A feature selection algorithm based on association rules is presented, and the impact of support and confidence on the presented method are studied. The experimental results show that the feature subset size and classification accuracy of the presented method are better than those of other methods. Furthermore, the results indicate high support and confidence levels do not guarantee high classification accuracy and small feature subset, and the sufficient number of rules is the precondition for high efficiency of feature selection based on association rules.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2009年第2期256-262,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60673124,60673087)
关键词 特征选择 特征子集 关联规则 分类 Feature Selection, Feature Subset, Association Rules, Classification
  • 相关文献

参考文献17

  • 1John G H, Kohavi R, Pfleger K. Irrelevant Features and the Subset Selection Problem// Proc of the 11th International Conference on Machine Learning. New Brunswick, USA, 1994:121-129
  • 2Koller D, Sahami M. Toward Optimal Feature Selection// Proc of the International Conference on Machine Learning. Bari, Italy, 1996 : 284 - 292
  • 3Dash M, Liu H. Feature Selection for Classification. Intelligent Data Analysis, 1997, 1(3) : 131 -156
  • 4Kira K, Rendell L A. The Feature Selection Problem: Traditional Methods and a New Algorithm//Proc of the 9th National Conference on Artificial Intelligence. San Jose, USA, 1991 : 129 -134
  • 5Kononenko I. Estimating Attributes : Analysis and Extension of Relief//Proc of the European Conference on Machine Learning. Catania, Italy, 1994: 171-182
  • 6Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. New York, USA: Springer-Verlag, 1996
  • 7Siedlecki W, Sklansky J. On Automatic Feature Selection. International Journal of Pattern Recognition and Artificial Intelligence, 19g8, 2(2) : 197 -220
  • 8Vafaie H, de Jong K. Genetic Algorithm as a Tool for Feature Selection in Machine Learning//Proc of the gth International Conference on Tools with Artificial Intelligence. Arlington, USA, 1992:200 - 204
  • 9Jain A, Zongker D. Feature Selection : Evaluation, Application, and Small Sample Performance. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153-158
  • 10Martin-Bautista M J, Vila M A. A Survey of Genetic Feature Selection in Mining Issues//Proc of the Congress on Evolutionary Computation. Washington, USA, 1999, Ⅱ: 13-23

同被引文献94

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部