期刊文献+

低信噪比的空间谱估计通道幅相误差校正算法 被引量:5

Algorithm for calibrating amplitude and phase errors from spatial spectrum estimation with low signal noise ratio
原文传递
导出
摘要 针对低信噪比情况下空间谱估计算法性能下降的问题,建立了低信噪比的阵列误差模型.该模型不仅考虑了通道幅相误差对接收信号的影响,还考虑了它对接收机通道噪声的影响.利用该模型提出了一种通道幅相误差校正算法,该算法结合阵列接收数据自相关矩阵的特征值分解和迭代方法,可以在低信噪比情况下准确求得阵列通道幅相误差,使得高分辨率的空间谱估计算法能够很好地应用于毫米波热辐射阵列接收系统.最后通过仿真和实验验证了所建立的阵列误差模型和算法的正确性和有效性. Spatial spectrum estimation would give its less performance if signal noise ratio (SNR) was low. An error model of array with low SNR was proposed. The influence of amplitude and phase errors and the influences of the errors on to other factors (e. g. the noise of receiver) were deliberated. Combined with eigenvalue decomposion and iteration of the correlation matrix of received signal, a method for calibrating the amplitude and phase errors was proposed to calculate the amplitude and phase errors accurately in low SNR situation, so that spatial spectrum estimation could be used in millimeter-wave radiation array system efficaciously with high resolution. The effectiveness of the low SNR error model of array and the calibration method were proved by the simulations and experiments.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期5-8,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60772090) 华中科技大学科学研究基金资助项目(2006M023B)
关键词 空间谱估计 通道幅相误差 校正 毫米波热辐射 信噪比 阵列 spatial spectrum estimation amplitude and phase errors calibration millimeter-wave thermal radiation signal noise ratio array
  • 相关文献

参考文献8

  • 1Weiss A J, Friendlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J]. IEEE Trans on Signal Processing, 1994, 42(6): 1 519-1 526.
  • 2Li F, Vaccaro R J. Sensitivity analysis of DOA estimation algorithms to sensor errors[J]. IEEE Trans on Aerospace and Electronic Systems, 1992, 28(3) : 708-717.
  • 3Swindlehurst A L, Kailath T. A performance analysis of subspace-based methods in the presence of mod- el errors (part Ⅰ):the MUSIC algorithm[J]. IEEE Trans on Signal Processing, 1992, 40(7): 1 758- 1 774.
  • 4周庆辉,靳学明,许宗泽.超分辨测向中通道间不一致的校正[J].雷达科学与技术,2006,4(5):280-283. 被引量:4
  • 5Hung E. Matrix-construction method for antenna arrays[J]. IEEE Trans on Aerospace and Electronic Systems, 2000, 36(3):819-828.
  • 6Zhang M, Zhou Z D. DOA estimation with sensor gain, phase and position perturbations[C]//Proceedings of the IEEE National Aerospace and Electronics Conference. Dayton: IEEE, 1993: 67-69.
  • 7Fistas N, Manikas A. A new general global array calibration method[C]//Proceedings of IEEE ICASSPI 94. Adelaide: IEEE, 1994:73-76.
  • 8Schmidt R O. Multiple emitter location and signal parameter estimation[J].IEEE Trans on Antennas and Propagation, 1986, AP-34(3): 276-280.

二级参考文献5

共引文献3

同被引文献40

  • 1董晓辉,柯亨玉,董志飞.阵列误差对四阶MUSIC算法到达角估计的影响[J].现代雷达,2005,27(1):41-43. 被引量:5
  • 2SCHMIDT R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 267-280.
  • 3SWINDLEHURST A, KAILATH T. A performance analysis of subspace-based methods in the presence of model error: part Ⅰ-the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1992, 40(7): 1758-1774.
  • 4FRIEDLANDER B. A sensitivity analysis of the MUSIC algorithm[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1740-1751.
  • 5LI F, VACCARO R J. Sensitivity analysis of DOA estimation algorithm to sensor errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(3): 708-717.
  • 6HAMZA R, BUCKLEY K. An analysis of weighted eigenspace methods in the presence of sensor errors[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1140-1150.
  • 7FERREOL A, LARZABAL P, VIBERG M. On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 907-920.
  • 8KAVEH M, BARABELL A J. The statistical performance of the MU- SIC and the minimum-norm algorithms in resolving plane waves in noise[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1986, 34(2): 331-341.
  • 9WEISS A J, FRIEDLANDER B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1519-1526.
  • 10FERREOL A, LARZABAL E VIBERG M. On the resolution probability of MUSIC in presence of modeling errors[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1945-1953.

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部