期刊文献+

基于统计岩石物理的含气储层饱和度与孔隙度联合反演 被引量:16

Joint Inversion of Saturation and Porosity in Gas Reservoirs Based on Statistical Rock Physics
下载PDF
导出
摘要 从地震数据中得到饱和度与孔隙度等储层物性参数是进行储层评价的关键。利用Gassmann方程讨论了储层岩石骨架特征、孔隙流体特征对介质地震弹性性质的影响,研究结果表明利用地震弹性属性反演饱和度等物性参数有其实现的特定岩石物理基础,其一是在气/水/油多相流体中,气体的体积模量相对于水/油的体积模量具有一定的可比性,而不能被忽略;其二是岩石骨架的纵波阻抗等弹性属性对所赋存孔隙流体的变化较为敏感。这样岩石的纵波阻抗等弹性参数随含水饱和度变化的变化率会明显增大,从而降低了从地震弹性属性中求取饱和度的不确定性和不稳定性。考虑到孔隙度与饱和度对储层岩石弹性特征影响的相关性,给出了基于随机岩石物理模型的Bayesian技术对孔隙度与含水饱和度进行联合反演的方法和步骤,并将该方法运用于高孔隙度含气砂岩储层的孔隙度及含水饱和度的预测中获得了较好的应用效果。 Extracting relatively accurate saturation value from seismic data was critical of pore fluid prediction and reservoir evaluation.The realization of saturation inversion had its rock physical basis,and depended on the elastic properties of pore fluid and the frame of reservoir rocks in different reservoir conditions.The bulk modulus of gas was comparable with that of brine and oil in the gas/oil/brine multi-phase system,it could not be neglected.Seismic elastic attributes,such as compressional impedance of rock frame was sensitive to the pore fluid variation.Under those conditions,the variation ratio of those elastic attributes,such as compressional impedance changing with water saturation was apparently raised,which could significantly reduce the ambiguity and instability of saturation inversion.Based on stochastic rock physical modeling,the joint inversion of saturation and porosity is realized by using Bayesian Inversion Method.This method is used to estimate water saturation and porosity for a high porosity gas reservoir and give a reliable estimation compared with drilling results.
出处 《石油天然气学报》 CAS CSCD 北大核心 2009年第1期48-52,391,共5页 Journal of Oil and Gas Technology
基金 国家"973"规划项目(2007CB209600)
关键词 饱和度 地震弹性属性 随机物理模型 Bayesian反演 含气储层 saturation seismic elastic attribute stochastic rock physical modeling Bayesian inversion gas reservoir
  • 相关文献

参考文献8

  • 1Goodway W,Chen T,Downton J.Improved AVO fluid detection and lithology discrimination using Lame petrophysieal parameters[A].In:SEG Expanded Abstracts[C].1997.183-186.
  • 2Avseth P.Mukerji T,Jorstad T,et al.Seismic reservoir mapping from 3-D AVO in the North Sea turbidite system[J].Geophysics,2001,66(4):1157-1176.
  • 3邓继新,王尚旭,李生杰,王绪本.砂岩储层地震属性参数对孔隙流体的敏感性评价[J].石油学报,2006,27(6):55-59. 被引量:21
  • 4Batzle M,Wang z.Seismic properties of pore fluids[J].Geophysics,1992,57(6):1369-1408.
  • 5Han De-Hua,Batzle M.Fizz water and low gas saturated reservoirs[J].The Leading Edge,2002,22(2):395-398.
  • 6Mavko G,Mukerji T,Dvorkin J.The rock physics handbook:tools for seismic analysis in porous media[M].New York:Cambridge University Press,1998.106-160.
  • 7Duda R,Hart P,Stork D.Pattern classification[M].New York:John Wiley & Sons,2000.50-160.
  • 8Hastings W.Monte Carlo sampling methods using Markov chains and its applications[J].Biometrika,1970,57(1):97-109.

二级参考文献7

  • 1Dillon L,Schwedersky G, Vasquez G, et al. A multiscale DHI elastic attributes evaluation [J]. The Leading Edge, 2003, 23 (5):1024-1029.
  • 2Acevedo H,Bogota E. Porosity and lithology prediction at Caballos Formation in the Puerto Colón Oil Field in Putumayo(Colombia) [J]. The Leading Edge,2003,23(6) : 1135-1141.
  • 3Russell B H, Hedlin K, Hilterman F,et al. Fluid-property discrimination with AVO: A Biot-Gassmann perspective[J]. Geophysics,2003,68( 1 ) :29-39.
  • 4Mavko G, Mukerji T, Dvorkin J. The rock physics handbook:Tools for seismic analysis in porous media[M]. New York:Cambridge University Press, 1998 : 106-160.
  • 5Goodway W, Chen T, Downton J. Improved AVO fluid detection and lithology discrimination using Lame petrophysical parameters[C]. SEG Expanded Abstracts, 1997 : 183-186.
  • 6Chopra S. Multiattribute seismic analysis on AVO-derived parameters: A case study [J]. The Leading Edge, 2003, 23 (5):998-1002.
  • 7马中高,管路平,贺振华,徐雷鸣.利用模型正演优选地震属性进行储层预测[J].石油学报,2003,24(6):35-39. 被引量:62

共引文献20

同被引文献196

引证文献16

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部