期刊文献+

S^3亚椭圆算子的谱

THE SPECTRUM OF SUBELLIPTIC OPERATORS ON S^3
下载PDF
导出
摘要 本文研究了与紧流形S3上的与Hopf纤维丛相联系的亚椭圆算子的谱.利用球调和函数的直和分解,得到了亚椭圆算子的谱和每个特征值所对应的特征空间及其维数. In this paper, we study the spectrum of the subelliptic operator based on the Hopf fibration on the sphere of dimension 3. By means of the direct decomposition of spherical harmonic function, the spectrum and the dimension of all the eigen-spaces are obtained.
出处 《数学杂志》 CSCD 北大核心 2009年第3期297-299,共3页 Journal of Mathematics
关键词 Hopf纤维丛 亚椭圆算子 球调和函数 Hopf fibration subelliptie operator spherical harmonic funetion spectrum
  • 相关文献

参考文献7

  • 1Fefferman C, Phong D H. Subelliptic eigenvalue problems [M]. Proceeding of the Conference on Harmonic Analysis, in honor of A. Zygmund, Wadsworth. Series, 1981,590-606.
  • 2Nagel A,Stein E M,Wainger S. Balls and metrics defined by vector fields I.. basic properties[J]. Acta Math. , 1985,155 :103-147.
  • 3Jerison D. The Poincare inequality for vector fields satisfying Hormander's condition[J]. Duke Math. , 1986,53:503-523.
  • 4Xu C J. Regularity for quasilinear second order subelliptic equations[J]. Comm. P. A. M., 1992,45:77-96.
  • 5Luo X B, Niu P C. The spectrum of the Kohn-Laplace Operator[J]. Chinese J. Comtemp. Math. , 1999, 20(2):281-287.
  • 6Stein E M. Singular Integrals and Differentiability Properties of Functions[M]. Prineeton.. Princeton University Press, 1970
  • 7叶人珍,陈文艺.次椭圆算子的第一特征值问题[J].数学杂志,2004,24(5):570-572. 被引量:1

二级参考文献7

  • 1F黎茨 B 塞克佛尔维-纳吉著 庄万等译.泛函分析讲义(第二卷)[M].北京:科学出版社,1983..
  • 2C Fefferman, D H Phong. Subelliptic eigenvalue problems[M]. Proceeding of the Conference on Harmonic Analysis, in honor of A. Zygmund, Wadsworth Math. Series, 1981, 590-606.?A
  • 3A Nagel,E M Stein & S Wainger. Balls and metrics defined by vector fields I: basic properties[J].Acta Math. , 1985,155:103-147.?A
  • 4D Jerison. The Poincaré inequality for vector fields satisfying H? rmander's condition, Duke Math.J, 1986,53:503-523.?A
  • 5C J Xu. Regularity for quasilinear second order subelliptic equations[J]. Comm. P. A. M. , 1992,45,77-96.?A
  • 6Luo Xuebo, Niu, Pengchang. The spectrum of the Kohn-Laplace Operator[J], Chinese J Comtemp.Math., 1999,20( 2 ):281-287.?A
  • 7E M Stein. Singular Integrals and Differentiability Properties of Functions[M]. Princeton University Press, Princeton, 1970.?A

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部