期刊文献+

一种新的雷达PRI调制特征提取方法 被引量:3

A New Feature Extraction Method for Radar PRI Modulation
下载PDF
导出
摘要 针对雷达脉冲重复间隔类型识别中存在的问题,提出了一种基于S_p向量曲线的特征提取算法。根据4种典型模式的雷达信号脉冲序列的特点,该算法应用Haar变换从雷达脉冲信号中提取频率特征,构成二维特征向量,实现雷达信号PRI调制类型的自动识别。仿真结果表明,对特征向量进行大幅度降维后,不仅简化了分类器,而且用于PRI识别仍是可行和有效的。 Aiming at the problem of radar PRI pattern recognition, a new feature extraction algorithm based on the Sp vector curves is proposed. According to the characteristics of 4 typical pulse train patterns, Haar transform is used to extract the frequency fea- tures from radar signals. The features constitute some two-dimensional vectors, which are used to identify the pulse repetition inter- val modulation of radar transmitter signals automatically. The simulation results show that when the vector dimensions are lowered, the extracted feature vector decreases the complexity of the classifier while maintaining the feasibility and efficiency of PRI pattern recognition.
作者 王春雷 张磊
出处 《现代雷达》 CSCD 北大核心 2009年第5期48-50,共3页 Modern Radar
关键词 雷达信号 脉冲重复间隔 重频特征向量 HAAR变换 radar signal putse repetition interval PRI feature vector Haar transform
  • 相关文献

参考文献5

二级参考文献15

  • 1张葛祥,荣海娜,金炜东.支持向量机在雷达辐射源信号识别中的应用[J].西南交通大学学报,2006,41(1):25-30. 被引量:31
  • 2Chien Chen-Fu, Chen Shi-Lin, Lin Yih-Shin. Using Bayesian Network for Fault Location on Distribution Feeder[J]. IEEE Trans on power delivery. 2002, 17(13): 785- 793.
  • 3Wojtek Przytula K. Construction of Bayesian Networks for Diagnostics[A]. Aerospace Conference Proceeding vol. 5[C]. IEEE, 2000. 193-200.
  • 4NOONE G P.A neural approach to automatic pulse repetition interval modulation recognition[C]// Proceedings of International Conference on Information,Decision and Control,1999,213-218.
  • 5ZHANG Gexiang,RONG Haina,JIN Weidong,et al.Radar emitter signal recognition based on resemblance coefficient features[C]// Lecture Notes in Artificial Intelligence.Berlin:Springer Verlag,2004,3066:665-670.
  • 6NOONE G P.A neural approach to tracking radar pulse repetition interval modulation[C] //Proceedings of 6th International Conference on Neural Information Processing,1999,3:1 075-1 080.
  • 7MARDIA H K.New technique for the deinterleaving of repetitive sequences[J].IEE Proceedings,Part F:Communications,Radar and Signal Processing,1989,136(4):149-154.
  • 8MILOJEVIC D J,POPOVIC B M.Improved algorithm for the deinterleaving of radar pulses[J].IEE proceedings,Part F:Radar and Signal Processing,1992,139(1):98-104.
  • 9VAPNIK V.Statistical learning theory[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 10HSU C W,LIN C J.A comparison of methods for multiclass support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.

共引文献114

同被引文献37

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部