期刊文献+

基于高斯混合模型流行音乐中歌唱部分的智能检测 被引量:3

GMM Based Intelligent Detection of the Vocal Segment in Popular Music
下载PDF
导出
摘要 有效地检测出流行音乐中的歌唱部分对在海量数据库中进行音乐检索、浏览、归类,以及旋律提取和歌唱家识别等有较大的价值.本文使用在语音信号处理中广泛使用的基于梅尔频率的倒谱系数(MFCC)作为语音特征来分析所要处理的音乐信号,并采用高斯混合模型(GMM)的建模方法分别为音乐中的伴奏部分(non-vocal)和歌唱部分(vocal)建立相应的GMM,进而实现音乐中歌唱部分的智能检测.与传统的只用一组手工标示了vocal和non-vocal的训练数据分别为两类数据训练一个GMM的方法相比较,本文在此基础上,再分别用一组纯歌唱部分数据和一组纯伴奏部分数据为每类建立一个GMM,然后将上述得到的两个vocalGMMs和non-vocalGMMs进行线性组合得到表示每类的概率模型.本文使用似然概率分类器作为系统的决策函数.实验结果表明该方法能够有效提高系统的识别性能. Effective detection of vocal segment in popular music is very valuable in many applications, such as music retrieval, browsing. and cataloguing in a large database, melody extraction and singer recognition. The feature vector used to analyze the music signal in this paper is Mel - Frequency Cepstral Coeffcient which is generally used in speech signal processing. The methods of training GMM are applied to create the corresponding GMM for the non - vocal and vocal in a music respectively, which can achieve the goal of intelligent detection of vocal segment. In contrast to the conventional GMM training methods, using one group of training data which are hand - labeled as non - vocal and vocal to create one model for each class. On the other hand,in this paper, another GMM is created for each class using a group of pure vocal data and a group of pure non - vocal data respectively. And the probability models are obtained through the means of linear combination of the two GMMs of each class. The decision function used in this paper is likelihood probability classifier. The experiment results show that this method can improve the performance of the detection.
出处 《小型微型计算机系统》 CSCD 北大核心 2009年第5期1017-1020,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60702071)资助 四川省科技厅应用基础研究基金数字免疫网络研究项目(2006J13~065)资助 教育部新世纪优秀人才支持计划项目(NCET-06-0811)资助
关键词 歌唱部分的智能检测 歌唱部分 伴奏部分 高斯混合模型 梅尔频率倒谱系数 intelligent detection of vocal segment vocal segment non - vocal segment GMM MFCC
  • 相关文献

参考文献15

  • 1Wei-Ho Tsai,Hsin-Min Wang.Towards automatic identification of singing language in popular music recordings[C].Proc.of the 5th International Conference on Music Information Retrieval,2004,1-8.
  • 2Tin Lay Nwe,Arun Shenoy,Ye Wang.Singing voice detection in popular music[C].Proc.of the 12th Annual ACM International Conference on Multimedia,NewYork,NY,USA,2004,324-327.
  • 3Wei-Ho Tsai.Hsin-Min Wang.Automatic singer recognition of popular music recordings via estimation and modeling of solo vocal signals[J].IEEE Transactions on Audio,Speech,and Language Processing,January,2006,14(1):330-341.
  • 4Kai Chen,Sheng Gao,Zhu Yong-wei,et al.Popular song and lyrics synchronization and its application to music information retrieval[A].In:Surendar Chandra.Carsten Griwodz.SPIE-IS&T Electronic Imaging[C].Proc.of the Thirteenth Annual Conference on Multimedia Computing and Networking,2006,6071:1-11.
  • 5Adam L,Berenzweig,Daniel P W.Ellis.Locating singing voice segments within music signals[C].Proc.of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,October,2001,1-4.
  • 6George Tzanetak.Song-specific bootstrapping of singing voice structure[C].Proc.of the IEEE International Conference on Multimedia & Expo,2004,2027-2030.
  • 7Namunu Chinthaka Maddage,Kongwah Wan,Xu Chang-sheng,et al.Singing voice detection using twice-iterated composite fourier transform[C].Proc.of the IEEE International Conference on Multimedia & Expo,2004,1347-1350.
  • 8Hanna Lukashevich,Matthias Gruhne,Christian Dittmar.Effective singing voice detection in popular music using arma filtering[C].Proc.of the 10th Int.Conference on Digital Audio Effects(DAFx-07).Bordeaux,France,September,2007,DAFX1-DAFX4.
  • 9Wei-ho Tsai,Hsin-min wang.On the extraction of vocal-related information to facilitate the management of popular music collections[C].Proceedings of the 5th ACM/IEEE-CS joint conference on Digital libraries,2005,197-206.
  • 10Vidya Venkatachalam,Luca Cazzanti L,Navdeep Dhillon,et al.Automatic identification of sound recordings[M].IEEE Signal Processing Magazine.March,2004,92-99.

同被引文献20

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部