摘要
考察了二阶三点边值问题u"(t)+f(t,u(t))=0,0<t<1;αu(0)=βu'(0),ku(η)=u(1)的正解存在性与多解性,其中允许f(t,u)在t=0,t=1处奇异.利用锥上的Krasnosel’skii不动点定理获得了几个局部存在定理.
The existence and multiplicity of positive solutions are considered for the second-order threepoint boundary value problem u"(t) + f(t,u(t)) = 0, 0 〈 t 〈 1; αu(0) = βu'(0), ku(η) = u(1), where f(t,u) is allowed to be singular at t = 0, t = 1. Several local existence theorems are obtained by applying the Krasnosel'skii fixed point theorem on cone.
出处
《新疆大学学报(自然科学版)》
CAS
2009年第2期145-149,共5页
Journal of Xinjiang University(Natural Science Edition)
关键词
多点边值问题
正解
存在性
多解性
multipoint boundary value problem
positive solution
existence
multiplicity