期刊文献+

一类非线性二阶三点边值问题的正解(英文)

Positive Solutions to a Class of Nonlinear Second-Order Three-Point Boundary Value Problems
下载PDF
导出
摘要 考察了二阶三点边值问题u"(t)+f(t,u(t))=0,0<t<1;αu(0)=βu'(0),ku(η)=u(1)的正解存在性与多解性,其中允许f(t,u)在t=0,t=1处奇异.利用锥上的Krasnosel’skii不动点定理获得了几个局部存在定理. The existence and multiplicity of positive solutions are considered for the second-order threepoint boundary value problem u"(t) + f(t,u(t)) = 0, 0 〈 t 〈 1; αu(0) = βu'(0), ku(η) = u(1), where f(t,u) is allowed to be singular at t = 0, t = 1. Several local existence theorems are obtained by applying the Krasnosel'skii fixed point theorem on cone.
作者 姚庆六
出处 《新疆大学学报(自然科学版)》 CAS 2009年第2期145-149,共5页 Journal of Xinjiang University(Natural Science Edition)
关键词 多点边值问题 正解 存在性 多解性 multipoint boundary value problem positive solution existence multiplicity
  • 相关文献

参考文献8

  • 1GUPTA C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation[J]. J Math Anal Appl, 1992, 108: 540-551.
  • 2GUPTA C P. A sharper condition for solvability of a three-point boundary value problem[J]. J Math Anal Appl, 1997, 205: 586-597.
  • 3MA Ruyun. Nonlocal Problems of Nonlinear Ordinary Differential Equations[M]. Beijing: Science Press, 2003.
  • 4JIANG Daqing, A singular nonlinear three-point boundary value problem[J]. J Northeast Normal Univ, 1998, 36(1): 3-6.
  • 5MA Yuhong, MA Ruyun. Positive solutions to a class of singular nonlinear three-point boundary value problems[J]. Acta Math Scientia, 2003, 23A: 583-586.
  • 6YAO Qingliu. Existence and multiplicity of positive solutions for a class of second-order three- point boundary value problems[J}. Acta Math Sinica, 2002, 45: 1059-1064.
  • 7YAO Qingliu. Solvability of a class of nonlinear elastic beam equations with both fixed ends[J]. J Xinjiang University, 2006, 23: 389-392.
  • 8YAO Qingliu. Positive solutions of nonlinear second-order periodic boundary value problems [J]. Appl Math Letters, 2007, 20: 583-590.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部