期刊文献+

语义Web规则语言的模糊扩展

A Fuzzy Extension of Semantic Web Rule Language
下载PDF
导出
摘要 语义Web规则语言SWRL有较强的表达能力.但它无法表示语义Web中含有的大量不精确和不确定的知识和信息;模糊集中单个隶属度不能准确表达模糊信息;f-SWRL中的权重只能表达模糊类和模糊属性的重要程度.针对以上问题,提出了一种基于vague集的模糊SWRL的扩展形式vague SWRL,给出了二级权重的概念来修饰和限定模糊类和模糊属性的隶属度,研究了vague-SWRL的语法语义,给出了vague-SWRL的规则实例.Vague集的引入,特别是二级权重的引入,增强了模糊规则的表达能力,符合语义Web的发展趋势,具有较大的优越性. Although SWRL, i.e. semantic Web rule language, has highly expressive power, it is unable to express the imprecise and uncertain knowledge/information which is so much in semantic Web. In addition, a single membership degree in fuzzy sets is inaccurate to express the fuzzy information, and the weights in f-SWRL can only express the importance of fuzzy classes and fuzzy properties. A fuzzy SWRL extension named vague-SWRL is therefore proposed on the basis of vague sets, with the notion of second-degree weight introduced to modify and restrict the membership degrees of fuzzy classes and fuzzy properties. The syntax and semantics of vague- SWRL are investigated and specified, and a rule example is given to illustrate the features of vague-SWRL. Introducing the vague sets especially the second-degree weights into rule languages, the expressive power of vague rules is enhanced so as to conform to the developmental trend of semantic Web with significant superiority.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第5期632-635,共4页 Journal of Northeastern University(Natural Science)
基金 教育部新世纪优秀人才支持计划项目(NCET-05-0288)
关键词 SWRL 模糊集 VAGUE集 vague—SWRL 二级权重 SWRL fuzzy sets vague sets vague-SWRL second-degree weight
  • 相关文献

参考文献8

  • 1Berners-Lee T, Hendler J, Lassila O. The semantic web[J]. The Scientific American, 2001,284 (5) : 34 - 43.
  • 2Bechhofer S, van Harmelen F, Hendler J, et al. OWL web ontology language reference w3c[EB/OL]. (2004 02- 10) [2008- 05 - 10 ]. http://www. w3. org/TR/2004/REC- owl-ref-20040210.
  • 3TRMI. The rule markup initiative[EB/OL]. (2000- 11 - 10)[2008 05- 15]. htttp://www. ruleml. org/2000 11 - 10.
  • 4Horrocks I, Patel-Schneider P F, Boley H, et al. SWRL: a semantic web rule language I combining OWL and RuleML. w3c member submission [ EB/OL ]. (2004 - 05 - 21 ) [ 2008 - 02 - 18]. http://www. w3. org/Submission/SWRL.
  • 5Zadeh L A. Fuzzy sets [J]. Information and Control, 1965,8(3) :338 - 353.
  • 6Pan J Z, Stoilos G, Stamou G, et al. f-SWRL: a fuzzy extension of SWRL[J ]. Journal of Data Semantic, Special Issue on Emergent Semantics, 2006,6 : 28 - 46.
  • 7Gau W L, Buehrer D J. Vague sets[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1993,23 (2) : 610 - 614.
  • 8赵法信,马宗民.基于Vague关系数据模型的聚集操作[J].东北大学学报(自然科学版),2006,27(12):1331-1334. 被引量:8

二级参考文献9

  • 1[2]Zemankova M,Kandel A.Implementing imprecision in information systems[J].Information Science,1985,37:107-141.
  • 2[3]Ma Z M,Mili F.Handling fuzzy information in extended possibility-based fuzzy relational databases[J].International Journal of Intelligent Systems,2002,17(10):925-942.
  • 3[4]Gau W L,Buehrer D J.Vague sets[J].IEEE Transactions on Systems,Man,and Cybernetics,1993,23(2):610-614.
  • 4[5]Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
  • 5[6]Lu A,Ng W.Vague sets or intuitionist fuzzy sets for handling vague data:which one is better?[A].Lecture Notes in Computer Science[C].Heidelberg:Springer,2005.401-416.
  • 6[7]McClean S I,Scotney B W,Shapcott C M.Aggregation of imprecise and uncertain information in databases[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(6):902-912.
  • 7[8]Keen P G W,Morton M S S.Decision support systems:an organizational perspective[M].Menlo Park:Addison Wesley,1978.167-188.
  • 8[9]Rundensteiner E A,Bic L.Evaluating aggregates in possibilistic relational databases[J].Data Knowledge Engineering,1992,7(3):239-267.
  • 9[10]Ross R,Subrahmanian V S,Grant J.Aggregate operators in probabilistic databases[J].Journal of the ACM,2005,52(1):54-101.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部