摘要
研究一类具有Watt型功能性反应的捕食模型.讨论了该系统正平衡点的存在性以及非负平衡点的性态,应用Poincare-Bendixson定理和张芷芬定理,证明了极限环的存在性和唯一性,并采用构造Dulac函数的方法,获得了正平衡点全局渐近稳定性的一个充分条件.
A class of predator prey model with Watt type functional response is studied. The existence of positive equilibrium point and the properties of non-negative equilibrium points are discussed. It proves the existence and uniqueness of limit cycles applying the Poincare-Bendixson theorem and Zhang Zhifen theorem. With the methods of constructing Dulac function, it obtains an ample factor of positive equilibrium points global asymptotic stability.
出处
《大学数学》
2009年第2期46-50,共5页
College Mathematics
关键词
捕食系统
Watt型功能性反应
正平衡点
极限环
稳定性
predator-prey system
Watt type functional response
positive equilibrium points
limit cycles
stability