摘要
进一步研究随机变量部分和与随机和的大偏差,其中S(n)=∑ni=1Xi,S(t)=∑N(t)i=1Xi(t>0).{Xn,n≥1}是一个独立同分布的随机变量(未必是非负的)序列具有共同的分布F(定义于R上)和有限期望μ=EX1.{N(t),t≥0}是一个非负的整数值的随机变量的更新计数过程且与{Xn,n≥1}相互独立.本文在假定F∈C条件下,进一步推广并改进了由Klüppelberg等和Kaiw等人给出的一些大偏差结果.这些结果可应用到某些金融保险方面的一些特定的问题中去.
This paper investigates large deviation for partial and random sums of random variables where { Xn, n≥ 1 } are independent identically distributed random variables with a common heavy-tailed distribution function F on the real line R and finite mean μ = EX1. {N (t), t≥0} is a renewal counting process of non-negative integer valued random variables, N(t) independent of (Xn,n≥1}, S(n)=i=1∑nXi,S(t)=i=1∑n(xi(t〉0) Suppose F∈C, this paper furhter extended and improved the some large deviation results by Kluppelberg et. al. and Kaiw et. al. These results can applies to certain problems in insurance and finance.
出处
《大学数学》
2009年第2期97-103,共7页
College Mathematics
关键词
更新风险模型
更新计数过程
重尾分布
大偏差
renewal risk model
renewal counting process
heavy-tailed ditribution
large deviations