期刊文献+

风险模型中重尾随机变量和的若干大偏差结果

Some Large Deviation Results for Sums of Heavy-tailed Random Variables in the Risk Models
下载PDF
导出
摘要 进一步研究随机变量部分和与随机和的大偏差,其中S(n)=∑ni=1Xi,S(t)=∑N(t)i=1Xi(t>0).{Xn,n≥1}是一个独立同分布的随机变量(未必是非负的)序列具有共同的分布F(定义于R上)和有限期望μ=EX1.{N(t),t≥0}是一个非负的整数值的随机变量的更新计数过程且与{Xn,n≥1}相互独立.本文在假定F∈C条件下,进一步推广并改进了由Klüppelberg等和Kaiw等人给出的一些大偏差结果.这些结果可应用到某些金融保险方面的一些特定的问题中去. This paper investigates large deviation for partial and random sums of random variables where { Xn, n≥ 1 } are independent identically distributed random variables with a common heavy-tailed distribution function F on the real line R and finite mean μ = EX1. {N (t), t≥0} is a renewal counting process of non-negative integer valued random variables, N(t) independent of (Xn,n≥1}, S(n)=i=1∑nXi,S(t)=i=1∑n(xi(t〉0) Suppose F∈C, this paper furhter extended and improved the some large deviation results by Kluppelberg et. al. and Kaiw et. al. These results can applies to certain problems in insurance and finance.
作者 孔繁超
出处 《大学数学》 2009年第2期97-103,共7页 College Mathematics
关键词 更新风险模型 更新计数过程 重尾分布 大偏差 renewal risk model renewal counting process heavy-tailed ditribution large deviations
  • 相关文献

参考文献1

二级参考文献5

  • 1C. C. Heyde.A contribution to the theory of large deviations for sums of independent random variables[J].Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete.1967(5)
  • 2Nagaev,A. V.Integral limit theorems for large deviations when Cramer’s condition is not fulfilled I, II, Theory Prob[].Ap-pl.1969
  • 3Nagaev,S. V.Large deviations of sums of independent random variables, Ann[].Probe.1979
  • 4Nagaev,S. V.Large deviations for sums of independent random variables, in Sixth Prague Conf[].on Information Theory Random Processes and Statistical Decision Functions Prague: Academic.1973
  • 5Heyde,C. C.A contribution to the theory of large deviations for sums of independent random variables, Z[].Wahrschein-lichkeitsth.1967

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部