摘要
用游标卡尺测量了当前流行的几种易拉罐饮料尺寸参数,然后建立微分方程模型和规划模型,借助MATLAB 6.5,LINGO8.0编程求解出了易拉罐为正圆柱体、圆台和圆柱体的组合体时的最优设计.最后综合经济、美观、实用等因素,运用非线性规划和层次分析法得出设想中易拉罐的最佳设计,对2006"高教社杯"全国数学建模竞赛C题中的各问题作出了完整的解答.
We measure the parameter of size of several beverage cans that is in popular use by vernier caliper, set a differential equation model and a programming model and use the programs MATLAB 6.5 and LINGO 8.0 to figure out the best design of the beverage can, when it is shaped to be the cylinder or the combination of round iron and cylinder. Finally, we take into consideration the factors such as economy, the outlook and practicality, use non-linear programming and analytical hierarchy process and get the best design of the beverge can according to our scheme. Our work is expected be a perfect solution to the Problem C of CUMCM-2006.
出处
《大学数学》
2009年第2期147-153,共7页
College Mathematics
关键词
微分方程
非线性规划
层次分析法
黄金分割
differential equation
non-linear programming
analytical hierarchy process
golden section