期刊文献+

基于AFM的聚己酸内酯纳米纤维的弯曲力学性能 被引量:2

AFM-Based Bending Test of Electrospun PCL Nanofibers
下载PDF
导出
摘要 采用原子力显微镜(AFM)对静电纺丝法制备的纳米级聚己酸内酯纤维进行了三点弯曲实验。纳米纤维收集在经光刻处理后带有U型凹槽的硅片上,凹槽的深度为10μm,待测纳米纤维的直径范围为83nm~800nm。利用原子力显微镜的探头测量纤维直径并对纤维中点施力获得纤维的力-挠度曲线,结合经典的梁弯曲理论,计算出聚己酸内酯纳米纤维的弹性模量。实验结果显示,当纤维直径减小到某一临界值时,纤维的弹性模量呈现显著增大的趋势,这说明在研究纳米尺度聚己酸内酯纤维的力学性能过程中,需要考虑其尺寸效应。 In this paper, results of an atomic force microscopy (AFM)-based 3-point bending test performed on electrospun polycaprolactone (PCL) nanofibers were reported. The fibers had diameters that range from 83 nm--800 nm and samples were collected for testing by randomly depositing them over a silicon wafer lined with 10 μm Uchannels. Using the AFM tip the precise fiber diameter and the force-deflection curve were measured, and from this information the elastic modulus of the PCL nanofibers were readily determined via the classic beam bending theory. The results show that the fibers exhibit an increasingly enhanced elastic modulus as their diameters are decreased past a threshold value. Our experiments show that it is necessary to consider the obvious size-dependent behavior in PCL fibers when studying their mechanical properties at the nano-scale level.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2009年第5期49-52,共4页 Polymer Materials Science & Engineering
基金 上海市科委自然科学基金资助项目STCSM(04JC14012) 上海市重点学科建设项目(B113)
关键词 聚己酸内酯纳米纤维 纳米弯曲实验 尺寸效应 PCL nanofibers nano-bending test size-dependent effects
  • 相关文献

参考文献10

  • 1HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospirming and their applications in nanocomposites[J]. Comp. Sci. Technol., 2003, 63: 2223-2253.
  • 2CHEUNG H Y, LAU K T, LU T P, et al. A critical review on polymer-based bio-engineered materials for scaffold development[J ]. Comp. Part B-Eng., 2007, 38: 291-300.
  • 3BIRESAW G, CARRIERE C J. Interracial tension of polycaprolactone/polystyrene blends by the imbedded fiber retraction method[J]. J. Appl. Polym. Sci., 2002, 83: 3145-3151.
  • 4YANG K S, PARK S H, CHOI Y O, et al. Fiber formation from m-interpenetrating polymer networks consisting of polycaprolaetone and a poly(ethylene glycol) macromer[J ]. J. Appl. Polym. Sci., 2002, 84: 835-841.
  • 5TAN E P S, LIM C T. Physical properties of a single polymeric nanofiber[J]. Appl. Phys. Lett., 2004, 84: 1603-1605.
  • 6CHEN B Q, SUN K. Poly (epsilon-eaprolaetone) /hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interracial interaction and properties [J ]. PolymerTesting, 2005, 24: 64-70.
  • 7原波,王珺,韩平畴,林水德.聚己酸内酯纳米纤维的拉伸试验及表面表征[J].高分子材料科学与工程,2008,24(11):126-129. 被引量:4
  • 8FLECK N A, MULLER G M, ASHBY M F, etal. Strain gradient plasticity-theory and experiment[J]. Acta Metallurgicaet Materialia, 1994, 42: 475-487.
  • 9MILLER R E, SHENOY V B. Size-dependent elastic properties of nanosized structural elements[J]. Nanotechnol., 2000, 11: 139- 147.
  • 10SUN C Q. Size dependence of nanostruetures: impact of bond order deficiency[J]. Progress in Solid State Chemistry, 2007, 35: 159.

二级参考文献7

  • 1於秋霞,朱光明,梁国正,杜宗刚,宫兆合.聚ε-己内酯的合成、性能及应用进展[J].高分子材料科学与工程,2004,20(5):37-40. 被引量:38
  • 2HUANG Z M, ZHANG Y Z, KOTAKI M, et al. Compos. Sci. Technol., 2003, 63: 2223-2253.
  • 3JEUN J P, LIM Y M, NHO Y C. Journal of Industrial and Engineering Chemistry, 2005, 11 (4): 573-578.
  • 4WANG M, JIN H J, KEPI.,,AN D L, et al. Macromol., 2004, 37(18): 6856-6864.
  • 5TAN E P S, LIM C T. Review of Scientific Instruments, 2004, 75(8): 2581-2585.
  • 6BELLAN L M, KAMEOKAI J, CRAIGHEAD H G. Nanoteehnology, 2005, 16(8): 1095-1099.
  • 7CUENOT S, FRETIGNY C, DEMOUSTIER- CHAMPAGNES, etal. J. Appl Phys., 2003, 93(9): 5650-5655.

共引文献3

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部